[選択項目] 年度:1991~2023年 大学:室蘭工業大

0.1 $y = \sin x \ (0 \le x \le \pi)$ を x 軸のまわりに回転してできる立体の体積を求めよ.

(室蘭工業大 2005) (m20055501)

0.2 微分方程式 $(xy^2 + 2y^2)dx + (3x^2 + x^2y)dy = 0$ の一般解を求めよ.

(室蘭工業大 2005) (m20055502)

0.3 次の関数を微分せよ.

$$y = \sin^4 3x$$

(室蘭工業大 2005) (m20055503)

0.4 次の不定積分を求めよ.

$$\int x \sin x dx$$

(室蘭工業大 2005) (m20055504)

$$\mathbf{0.5} \quad A = \begin{pmatrix} 2 & 4 & 6 \\ 4 & 9 & 14 \\ 8 & 16 & 33 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 92 \\ 209 \\ 449 \end{pmatrix}, \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \qquad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix},$$

$$L = \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{21} & l_{22} & l_{23} \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{pmatrix}$$

$$\geq \frac{1}{2} \cdot 5.$$

方程式 Ax = b を次の手順に従って解け.

- (1) A = LU を満たすような行列 L および U を求めよ.
- (2) Ly = b を満たすような y を求めよ.
- (3) Ux = y を満たすようなx を求めよ.

(室蘭工業大 2005) (m20055505)

0.6 次式で定義される双曲線関数:

$$sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2}$$

について、以下を示しなさい.

- $(1) \quad \cosh^2 x \sinh^2 x = 1$
- (2) $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$

(室蘭工業大 2005) (m20055506)

0.7 以下の微分方程式:

$$\frac{d^2f(x)}{dx^2} + \frac{5}{2}\frac{df(x)}{dx} - \frac{3}{2}f(x) = 0$$

を、初期条件:

$$f(0) = 1, \qquad f'(0) = 1$$

のもとで解きなさい.

(室蘭工業大 2005) (m20055507)

0.8 ベクトル場 $\mathbf{A}=x^2y^3\mathbf{i}+2xy^2z^4\mathbf{j}-y^3z^5\mathbf{k}$ について, $\operatorname{grad}(\operatorname{div}\mathbf{A})$

を求めなさい. ここで, i, j, k は直交座標系の x 軸, y 軸, z 軸上で正の向きを持つ単位ベクトルである.

(室蘭工業大 2005) (m20055508)

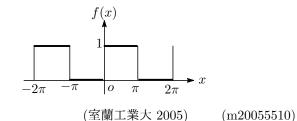
0.9 以下の不定積分を求めなさい.

$$(1) I = \int e^{\alpha x} \cos \beta x dx$$

$$(2) \int \frac{1}{\cos x} dx$$

(室蘭工業大 2005) (m20055509)

0.10 右図のような周期が 2π の関数 f(x) を フーリエ級数展開しなさい.



0.11 行列 E および J を以下のように定義する.

$$E = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \,, \qquad J = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right)$$

このとき, 行列 $A=\left(\begin{array}{cc}a_1&-a_2\\a_2&a_1\end{array}\right)$ および $B=\left(\begin{array}{cc}b_1&-b_2\\b_2&b_1\end{array}\right)$ として, 以下が成り立つことを示しなさい.

- (1) $J^2 = -E$
- (2) $AB = (a_1b_1 a_2b_2)E + (a_1b_2 + a_2b_1)J$
- (3) $A^t A = (a_1^2 + a_2^2)E$ (ただし, A^t は, A の転置行列を表す)

(室蘭工業大 2005) (m20055511)

- **0.12** 関数 $y = \log(x^2 + 3)$ について次の問いに答えよ. ただし, $\log de$ を底とする自然対数である.
 - (1) 関数 y の導関数を求めよ.
 - (2) 関数 y の第 2 次導関数を求めよ.

(室蘭工業大 2005) (m20055512)

0.13 x > 0 で α が実数のとき, 公式 $(x^{\alpha})' = \alpha x^{\alpha-1}$ を証明せよ.

(室蘭工業大 2005) (m20055513)

0.14 次の定積分の値を求めよ.

$$\int_0^{\frac{\pi}{2}} \left(2e^x + \cos x \right) dx$$

(室蘭工業大 2005) (m20055514)

- **0.15** 行列 $C = \begin{pmatrix} 6 & 3 \\ 10 & a \end{pmatrix}$ について次の問いに答えよ.
 - (1) C が正則であるための条件を求めよ.
 - (2) C が正則のとき C の逆行列を求めよ.

0.16
$$A = \begin{pmatrix} 4 & 6 \\ 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & -6 \\ -4 & 8 \end{pmatrix}$ のとぎ AB , BA を求めよ.

(室蘭工業大 2005) (m20055516)

0.17 行列式を利用して,次の連立方程式を解け.
$$\begin{cases} 3x + y + 5z = 5 \\ x + y + 3z = 2 \\ 2x - y - z = 3 \end{cases}$$

(室蘭工業大 2006) (m20065501)

(室蘭工業大 2006) (m20065502)

0.19 以下のような行列 A,B が与えられている. AA^t および BB^t を求めなさい. ただし, A^t は行列 A の転置行列, B^t は行列 B の転置行列を表す.

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 0 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 0 & -2 \end{pmatrix}$$

(室蘭工業大 2006) (m20065503)

0.20 行列 C の固有値とその固有ベクトルを求めなさい. $C = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 2 \\ 0 & 3 & 1 \end{pmatrix}$

(室蘭工業大 2006) (m20065504)

0.21 次の式が与えられている. $f(x) = \frac{\sin 2x - \cos 2x}{\sin 2x + \cos 2x}$

導関数 $\frac{df}{dx}$ を求めなさい.

(室蘭工業大 2006) (m20065505)

0.22 次の不定積分を求めなさい. $\int x(ax^2+1)^n dx \quad (ただし, a \neq 0, n \neq -1)$ (室蘭工業大 2006) (m20065506)

0.23 次の式が与えられている. $f(x,y) = x^2y + y^2\cos x + y^3$ 偏導関数 $\frac{\partial f}{\partial x}$ および $\frac{\partial^2 f}{\partial x\partial y}$ を求めなさい.

(室蘭工業大 2006) (m20065507)

- **0.24** オイラーの公式: $e^{i\theta} = \cos \theta + i \sin \theta$ に関する以下の問に答えよ.
 - (1) オイラーの公式を用いて、つぎの公式を証明せよ.

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

(2) $e^{i(\theta+\varphi)}=e^{i\theta}e^{i\varphi}$ という式に、オイラーの公式を適用し、両辺の実部と虚部を比較して、余弦関数および正弦関数の加法公式

$$\cos(\theta + \varphi) = \cos\theta\cos\varphi - \sin\theta\sin\varphi$$

 $\sin(\theta + \varphi) = \sin\theta\cos\varphi + \cos\theta\sin\varphi$

を導出せよ.

(室蘭工業大 2006) (m20065508)

- 区間 2π で定義された関数 $f(t)=\pi-|t|$; $-\pi\leq t\leq\pi$ を $f(t+2\pi)=f(t)$ の関係によって周期 0.25関数に拡張した関数を考える.
 - (1) この関数の概形を $-2\pi \le t \le 2\pi$ の範囲で図に示せ、縦軸、横軸に適切な数値を入れること、
 - (2) この周期関数をフーリエ級数で表せ.

(室蘭工業大 2006) (m20065509)

次の微分を計算せよ. $\frac{d}{dx}\left[\tan^{-1}\left(\frac{1}{2-3x}\right)\right]$ 0.26

> (室蘭工業大 2006) (m20065510)

0.27 次の定積分を計算せよ. $\int_0^1 \frac{2x}{x^4+1} dx$

(室蘭工業大 2006) (m20065511)

0.28 つぎの行列 A に関し、以下の問に答えよ.

$$A = \begin{pmatrix} b^2 + c^2 & ab & ca \\ ab & c^2 + a^2 & bc \\ ca & bc & a^2 + b^2 \end{pmatrix}$$

(1) 次式が成り立つことを示せ.

$$\left(\begin{array}{ccc} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{array}\right)^2 = A$$

(2) A の行列式を求めよ.

(室蘭工業大 2006) (m20065512)

0.29 以下の関数の導関数を求めよ.

 $(1) (ax+b)^n (2) \sqrt{1-x}$

(3) $\log(ax+b)$ (4) $e^{\frac{1}{x}}$

(室蘭工業大 2006) (m20065513)

以下の定積分の値を求めよ. 0.30

$$(1) \int_0^1 x^n (1-x) dx$$

(2)
$$\int_{a}^{b} (x-a)(b-x)dx$$

(室蘭工業大 2006) (m20065514)

$$\left|\begin{array}{ccc|c} 1 & 2 & -1 \\ 0 & 2 & 0 \\ 3 & 5 & -1 \end{array}\right|$$

(室蘭工業大 2006) (m20065515)

0.32 行列 $A = \begin{pmatrix} 2 & 3 \\ 6 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & -2 \\ -4 & 1 \end{pmatrix}$ について、以下の問いに答えよ.

(1) 2A + 3B を計算しなさい.

(2) AB, BA を求めなさい.

(室蘭工業大 2006) (m20065516)

0.33 行列 $A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$ の固有値を求めよ (a > 1) .

(室蘭工業大 2007) (m20075501)

0.34 微分方程式 $\frac{d^2u}{dx^2} - \frac{du}{dx} - 2u = x + \frac{5}{2}$ を初期条件 u(0) = 0, u''(0) = 1 のもとで解き、解の関数 u = u(x) の概形を $x \ge 0$ の範囲でグラフに描け、ただし、x の増加にしたがって u = u(x) が漸近する関数も式とともに図中に記すこと.

0.35 (1)
$$A=\left(\begin{array}{cc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right), \quad B=\left(\begin{array}{cc} 1 & 2 \\ 0 & k \end{array} \right)$$
 のとき、 BA を求めなさい.

$$(2) \quad A = \left(\begin{array}{cc} 2 & 1 \\ 4 & 3 \end{array} \right) \text{ obs}, \qquad AX = \left(\begin{array}{cc} -1 & 0 \\ 3 & 4 \end{array} \right) \qquad \text{ を満たす行列 } X \text{ を求めなさい}.$$

(室蘭工業大 2007) (m20075503)

- **0.36** 2 つのベクトル $\boldsymbol{a} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, $\boldsymbol{b} = \begin{pmatrix} x \\ 3 \end{pmatrix}$ について、次の問いに答えよ.
 - (1) a と b が直交するように x を求めなさい.
 - (2) a+bとa-bが直交するようにxを求めなさい.

(室蘭工業大 2007) (m20075504)

0.37 $A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$ の固有値 λ_1, λ_2 と固有ベクトル u_1, u_2 を求めなさい.

(室蘭工業大 2007) (m20075505)

 $egin{aligned} \mathbf{0.38} & \left(egin{array}{ccc} \cos heta & -\sin heta \ \sin heta & \cos heta \end{array}
ight)$ が直交行列であることを示しなさい.

(室蘭工業大 2007) (m20075506)

0.39 関数 f(x) のマクローリン展開は, $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ で与えられる.ただし, $f^{(n)}(0)$ は x=0 における f(x) の n 階導関数である. $x \to 0$ のとき, $e^x \sin x$ の漸近展開を x^3 の項まで求めよ.

(室蘭工業大 2007) (m20075507)

0.40 yz + zx + xy = 1 で与えられる z(x, y) の 2 次偏導関数を求めよ.

(室蘭工業大 2007) (m20075508)

0.41 次の複素数を実部と虚部に分け、a+jb (a,b は実数)の形で表せ. ただし、 $j=\sqrt{-1}$ である.

(1)
$$\frac{5(1-j2)}{(1+j2)(1+j3)(2+j)}$$
 (2)
$$2\left(\frac{\sqrt{3}}{2}+j\frac{1}{2}\right)^{8}$$
 (\sigma\frac{\text{\text{\sigma}}}{\text{\text{\$\pi\$}}}\text{\text{\text{\$\pi\$}}}\text{\text{\$\pi\$}}\text{\text{

- **0.42** 微分方程式 $x\frac{dy}{dx} 3y + x = 0$ について、以下の問いに答えよ.
 - (1) $u(x) = \frac{y(x)}{x}$ とおくと、与えられた微分方程式が $x\frac{du}{dx} = 2u 1$ と書けることを示せ.
 - (2) 初期条件 x=1 のとき y(1)=2 のもとで、与えられた微分方程式を解け、

(室蘭工業大 2007) (m20075510)

- **0.43** (1) $\cos^2\theta\sin(2\theta) \cos\theta\sin(3\theta) = A\sin(4\theta)$ と表したとき、係数 A を求めよ.
 - (2) $\cos^5 \theta = B \cos \theta + C \cos(3\theta) + D \cos(5\theta)$ と表したとき、係数 B, C, D を求めよ.

(室蘭工業大 2007) (m20075511)

0.44 行列 A および I を、 $A=\begin{bmatrix} a & 2a \\ b & b+1 \end{bmatrix}$ 、 $I=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ とするとき、 $A^2-5A-2I=0$ を満足する実数 a および b の組み合わせを求めよ.

(室蘭工業大 2007) (m20075512)

0.45 x, y, z がいずれも 0 ではないとき、次の等式

$$\frac{-(x+7y)}{2z} = \frac{x+2z}{-y} = \frac{2z-y}{x} = t$$

が成り立つためのtの値を求めよ.

(室蘭工業大 2008) (m20085501)

- **0.46** 次の微分方程式の一般解を求めよ. $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 3e^{-x}$ (室蘭工業大 2008) (m20085502)
- 0.47 次の関数の導関数を求めなさい.

$$f(x) = \sin\left(\frac{1}{x}\right)$$

(室蘭工業大 2008) (m20085503)

0.48 次の関数の導関数を求めなさい.

$$f(x) = e^x \cos x$$

(室蘭工業大 2008) (m20085504)

- **0.49** 次の定積分の値 I を求めなさい. $I = \int_0^t e^x \sin \omega x \, dx \quad (t>0)$ (室蘭工業大 2008) (m20085505)
- **0.50** 行列 \mathbf{A} が $\mathbf{A} = \begin{bmatrix} 3 & -1 \\ 4 & -2 \end{bmatrix}$ と与えられているものとする.このとき,以下の問題に答えなさい.
 - (1) 行列 \mathbf{A} の 2 つの固有値とそれらに対応する固有ベクトルを求めなさい.
 - (2) 行列 A を対角化しなさい. すなわち、下の関係を満たす正則行列 P と対角行列 Λ を求めなさい. もし、対角化が不可能な場合はその理由を述べなさい.

$$P^{-1}AP = \Lambda$$

(3) A^{10} (すなわち A の 10 乗) を求めなさい.

(室蘭工業大 2008) (m20085506)

- **0.51** ベクトル場 $\mathbf{A} = (\alpha xy z^3)\mathbf{i} + (\alpha 2)x^2\mathbf{j} + (1 \alpha)xz^2\mathbf{k}$ について、以下の問いに答えなさい.なお、 α は実数であり、 \mathbf{i} , \mathbf{j} , \mathbf{k} は直交座標系の x 軸,y 軸,z 軸上で正の向きを持つ単位ベクトルである.
 - (1) ベクトル場 \boldsymbol{A} が、x=1, y=1, z=1 においてベクトル $\boldsymbol{B}=2\beta \boldsymbol{i}+\beta \boldsymbol{j}-4\boldsymbol{k}$ と直交するとき、 実数 β を α を用いて表しなさい.
 - (2) ベクトル場 A の回転 (rot A) の値が任意の場所で $\overrightarrow{0}$ となるときの、 α の値を求めなさい.

(室蘭工業大 2008) (m20085507)

0.52 (1) a > 0 のとき、 $\int_{0}^{a} \sqrt{a^{2} - x^{2}} dx = \pi$ を満たす a の値を求めよ.

(2) 関数 g(x) は、関数 f(x) に対して、 $g(x) = f(0) + \sum_{n=1}^m \frac{f^{(n)}(0)}{n!} x^n \quad , \quad (m=1,2,3,\cdots)$ と定義される. ここで, $f^{(n)}(x)$ は f(x) の n 階の導関数を表す. $f(x) = e^{2x}$ とするとき,g(x) を、m=3 として求めなさい.

(室蘭工業大 2008) (m20085508)

- **0.53** (1) 行列 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ の固有値と各々の固有値に対応する固有ベクトルを求めなさい.
 - (2) P を正則な正方行列として $B = P^{-1}AP$ のときに A の固有値と B の固有値は一致することを示しなさい.
 - (3) $P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ のとき $B = P^{-1}AP$ として B の固有値と各々の固有値に対応する固有ベクトルを求めなさい.

(室蘭工業大 2008) (m20085509)

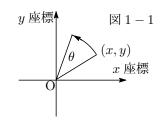
- **0.54** (1) 微分方程式 $\frac{dy(x)}{dx} 3y(x) = 0$ を初期条件 y(0) = 1 として解きなさい.
 - (2) (1) の解を f(x) として y(x)=u(x)f(x) とおく. このとき常微分方程式 $\frac{dy(x)}{dx}-3y(x)=e^x$ を x と u(x) の常微分方程式として表しなさい.
 - (3) 常微分方程式 $\frac{dy(x)}{dx} 3y(x) = e^x$ を解きなさい.

(室蘭工業大 2008) (m20085510)

0.55 括弧の中を埋めよ. 全部で8箇所ある.

2 次元平面上の任意の点を $\left(egin{array}{c} x \\ y \end{array}
ight)$ で表す(図 1-1 を参照する事).

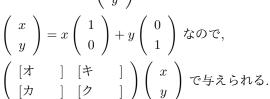
点 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ を原点 O の周りに角度 θ だけ回転(反時計回りを

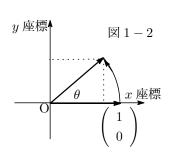


正とする,図 1-2 を参照)した点は $\left(egin{array}{ccc} [7 &] \\ [7 &] \end{array} \right)$ となる.

同様に考えると、点 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ はは $\begin{pmatrix} [\dot{p} &] \\ [x &] \end{pmatrix}$ に移る.

よって任意の点 $\begin{pmatrix} x \\ y \end{pmatrix}$ を原点の周りに角度 θ だけ回転した点は,

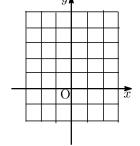




(室蘭工業大 2008) (m20085511)

- **0.56** 定積分 $\int_0^a |x^2 1| dx$, (a > 0) を以下の手順で求めよ.
 - (1) 関数 $f(x) = |x^2 1|$ の, x = -2, -1, 0, 1, 2 における値を求めよ.

$$f(-2) = f(-1) = f(0) = f(1) = f(2) =$$



- (2) 関数 $f(x) = |x^2 1|$ を $-2 \le x \le 2$ の範囲で、右のグラフにかけ、 x = -2, -1, 0, 1, 2 の時の f(x) の値がわかるように書く事.
- (3) 積分 $\int_0^1 |x^2 1| dx$ を求めよ.
- (4) a > 1 のときの定積分の値を求めよ.

(室蘭工業大 2008) (m20085512)

- **0.57** 方程式 $f(x) = 1 + \int_0^x f(t)dt$ を満たす微分可能な関数 f(x) を、以下の手順で求めよ.
 - (1) f(0) の値を求めよ.
 - (2) 上の方程式の両辺をxで微分し、f(x)に関する微分方程式を求めよ.
 - (3) A, k を定数として、x の関数 Ae^{kx} を x で微分せよ. ただし $e=2.718\cdots$ である.
 - (4) (1), (2), (3) の結果を用い, f(x) を求めよ.

(室蘭工業大 2008) (m20085513)

- 0.58 次の微分,不定積分を計算せよ.
 - $(1) \quad \frac{d}{dx} \left(xe^{-2x} \right)$
 - $(2) \quad \int (\log x)^2 \, dx$
 - (3) $\int \frac{x(x^2+12)}{x^4-16} \, dx$

(室蘭工業大 2009) (m20095501)

- 0.59 行列に関する以下の問いに答えよ.
 - (1) 行列 A, B, C, D を,

$$A = \begin{pmatrix} 1 & 0 \\ -3 & 1 \\ -1 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}, \ C = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \ D = \begin{pmatrix} 2 & -1 & 2 \end{pmatrix}$$

として、行列の積 AB, CD, DC を計算せよ.

(2) 行列 X を,

$$X = \left(\begin{array}{cc} x_{11} & x_{12} \\ x_{21} & x_{22} \end{array} \right)$$

として、その転置行列 tX 、および、固有和(トレース) $\operatorname{tr}(X)$ を、

$${}^{t}X = \begin{pmatrix} x_{11} & x_{21} \\ x_{12} & x_{22} \end{pmatrix}$$
, $\operatorname{tr}(X) = x_{11} + x_{22}$

8

と定義する. このとき, $\operatorname{tr}({}^{t}XX)$ を求めよ.

(室蘭工業大 2009) (m20095502)

0.60 3行3列の正方行列 A を以下のように定める.

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ a & b & 3 \end{pmatrix} \tag{1}$$

(1) 以下の3つの基本変形に関連して、行列式は以下の性質をもつ.

- (a) 2つの行を入れ換えると、行列式の値は -1 倍される.
- (b) ある行の定数倍をほかの行に加えても、行列式の値は変わらない.
- (c) ある行を c 倍すると、行列式の値も c 倍される.

上記の基本変形を利用して、Aを上三角行列に変形せよ、ここで、上三角行列とは、行列のi行 j 列成分(ただし、i > j)がゼロである行列のことである.

(2) A の行列式を求めよ.

(室蘭工業大 2009) (m20095503)

0.61 2つの関数

$$f(x) = \frac{1}{1+x} \tag{2}$$

$$g(x) = e^{-\alpha x} \quad (\alpha > 0) \tag{3}$$

とする.

- (1) 合成関数 h(x) = f(g(x)) を求めよ.
- (2) 関数 h(x) の 1 階の導関数 h'(x) と、2 階の導関数 h''(x) を求めよ.
- (3) $\alpha = 1$ の場合の h(x) のグラフを図示せよ.
- (4) h'(x) を α の関数とみなした場合の、 α に関する偏導関数 $\frac{\partial h'}{\partial \alpha}$ を求めよ.
- (5) h'(0) を α の関数として、そのグラフを図示せよ.

(室蘭工業大 2009) (m20095504)

次の等式が成り立つような k の値を求めよ. 0.62

$$(1) \quad \left| \begin{array}{cc} k+1 & 6 \\ 2 & k-3 \end{array} \right| = 0$$

$$\begin{vmatrix} k+1 & 6 \\ 2 & k-3 \end{vmatrix} = 0$$

$$(2) \begin{vmatrix} k+3 & -1 & 1 \\ 7 & k-5 & 1 \\ 6 & -6 & k+2 \end{vmatrix} = 0$$

(室蘭工業大 2009) (m20095505)

次の微分方程式の特殊解を求めよ. 0.63

(1)
$$\frac{dy}{dx} = -y$$
, 初期条件 $x = 0$ のとき $y = 5$

(2)
$$\frac{dy}{dx} = 3x^2 - e^x + \cos(x)$$
, 初期条件 $x = 0$ のとき $y = 2$

(室蘭工業大 2009) (m20095506)

0.64 (1) 次の微分を計算せよ.

$$\frac{d}{dx} \left(\frac{x}{\sqrt{1+x^2}} \right)$$

- (2) $f(x) = \sin(\sqrt{x})$ の導関数 f'(x) を求めよ.
- (3) $f(x) = 3x^3 + 1$, $g(x) = x^4 5$ に対する合成関数 h(x) = f(g(x)) および k(x) = g(f(x)) の導関 数 h'(x), k'(x) をそれぞれ求めよ.

(室蘭工業大 2010) (m20105501)

0.65 行列 A を $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ としたとき、次の問いに答えよ.

- (1) 行列式 |A| の値を求めよ.
- (2) 逆行列 A-1 を求めよ.
- (3) 行列 A の 2 乗 A² を求めよ.
- (4) 行列 A の N 乗 A^N を求めよ.

(室蘭工業大 2010) (m20105502)

0.66 直交座標の点 P(x,y,z) の位置ベクトル r を

$$\mathbf{r} = (x, y, z)$$

とする. また, スカラー関数 f(x,y,z) を

$$f(x, y, z) = 2x + y + 3z$$

とする. このとき以下の問の答えよ. ただし、▽ は次のベクトル演算子を表す.

$$\nabla = \left(\frac{\partial}{\partial x}, \ \frac{\partial}{\partial y}, \ \frac{\partial}{\partial z}\right)$$

- (1) ベクトル \mathbf{n} を $\mathbf{n} = \nabla f$ で定義するとき, $\mathbf{n} = (n_x, x_y, n_z)$ の形で表せ.
- (2) 関数 f(x,y,z) をベクトル n と r を用いて表せ.
- (3) f(x,y,z)=2x+y+3z=5 は平面を表す方程式である.この平面上にある 2 点 $P_1(x_1,\,y_1,\,z_1),\,P_2(x_2,\,y_2,\,z_2)$ における位置ベクトルを $m r_1=(x_1,\,y_1,\,z_1),\,m r_2=(x_2,\,y_2,\,z_2)$ とするとき、ベクトル $m r_1$ と $m r_1$ の内積が $m r_1=m r_2$ となることを示せ.
- (4) ベクトル n が平面 f(x, y, z) = 2x + y + 3z = 5 と垂直になることを示せ.

(室蘭工業大 2010) (m20105503)

0.67 次の微分方程式の解を求めよ。

$$(1) \quad \frac{dy}{dx} + \frac{x}{y} = 0$$

$$(2) \quad \frac{dy}{dx} + y + 3 = 0$$

(室蘭工業大 2010) (m20105504)

- **0.68** (1) 行列 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ について, $A^2 (a+d)A + (ad-bc)E = O$ が成り立つことを証明しなさい.ただし,a,b,c,d は実数であり,E を 2 次単位行列,O を 2 次零行列とする.
 - (2) 行列 $B=\left(\begin{array}{cc} 1 & 1 \\ 2 & 0 \end{array}\right)$ に対して B^5 を求めよ.
 - (3) 実数 x の n 次式を $x^n = (x^2 x 2)Q(x) + ax + b$ と表したときの係数 a および b を求めよ。ただし, Q(x) は多項式であり, n は自然数とする.
 - $(4) \quad \textbf{行列} \ B = \left(\begin{array}{cc} 1 & 1 \\ 2 & 0 \end{array} \right) \ \texttt{に対して} \ B^n \ \textbf{を求めよ.} \ \mathtt{xth}, \\ \textbf{(1)} \ \textbf{の証明および} \ \textbf{(3)} \ \textbf{の答えを利用すること.}$

(室蘭工業大 2010) (m20105505)

0.69 (1) 次の不定積分を計算せよ.

$$\int 2x \, \ln(x) \, dx$$

(2) 次の定積分を計算せよ.

$$\int_{1}^{2} \frac{x}{\sqrt{5 - x^2}} \, dx$$

(室蘭工業大 2010) (m20105506)

- **0.70** 3 つのベクトル, $\boldsymbol{a}=(2,1,3)$, $\boldsymbol{b}=(1,-2,-1)$, $\boldsymbol{c}=(0,k,1)$ (ただし k はある実数) について以下の問いに答えよ.
 - (1) a と b の外積 $a \times b$ を求めよ.
 - (2) a, b, c が一次従属となる k の値を求めよ.

(室蘭工業大 2010) (m20105507)

0.71 次の関数を x で微分せよ.

(1)
$$x^2 \sin x$$
 (2) $\left(x - \frac{1}{x}\right)^3$ (\sigma \text{\text{\text{\$\times \text{\$\tint{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitit}\$\$}}\$}\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\

0.72 以下の微分方程式の一般解を求めよ.

(1)
$$\frac{dy}{dx} + 2x + y = 0$$
 (2) $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$ (\sigma\text{\sigma}\text{\pi}\tex

0.73 次の行列 *A* の固有値と固有ベクトルを求めよ.

$$A = \left(\begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array}\right)$$

(室蘭工業大 2011) (m20115501)

0.74 次の微分方程式の一般解を求めよ.

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 4e^{-x}$$

(室蘭工業大 2011) (m20115502)

0.75 次の関数を微分せよ.

(1)
$$y = \frac{1}{\sqrt{x^2 + 2}}$$
 (2) $y = \frac{\cos x}{x}$ (2) $y = \frac{\cos x}{x}$ (2) $y = \frac{\cos x}{x}$

0.76 正の整数 N が 1 に較べて充分大きいとき,N! は $(N \ln N - N)$ と近似できることを示せ. ただし, $\ln N = \log_e N$ である.

(室蘭工業大 2011) (m20115504)

0.77 3つのベクトル A, B, C についてのスカラー 3 重積 $A \cdot (B \times C)$ は、ベクトル A, B, C で形成される平行六面体の体積に等しいことを示せ、ただし、A, B, C はすべてが同一平面上にないものとする.

(室蘭工業大 2011) (m20115505)

0.78 次の不定積分を計算せよ.

$$\int \frac{1}{x^2 - 3x - 10} dx$$
 (室蘭工業大 2011) (m20115506)

0.79 次の微分を計算しなさい.

$$\frac{d}{dx}\left(\sin^{-1}x - x\sqrt{1 - x^2}\right) \quad (ただし, -\frac{\pi}{2} < \sin^{-1}x < \frac{\pi}{2} とする)$$
(室蘭工業大 2011) (m20115507)

- 0.80 以下の問いに答えよ.
 - (1) 行列 $A=\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ の固有値と各々の固有値に対応する固有ベクトルを求めよ.
 - (2) $P^{-1}AP$ が対角行列となるような、正則な正方行列 P を求めよ. ただし、行列 P は直交行列(逆行列と転置行列が等しい行列)とする.

0.81 3つの異なるベクトル a, b, c を 3 辺にもつ平行六面体の体積 V が

$$V = |\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})|$$

と表されることを示せ.

(室蘭工業大 2011) (m20115509)

0.82 次の微分方程式の一般解を求めよ.

(1)
$$(1+x)\frac{dy(x)}{dx} - y(x) = 0$$

 (2) $\frac{dy(x)}{dx} + y(x) = 2e^{-x}$
 ($\overline{\Sigma}$ ($\overline{\mathbb{R}}$ \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} 2011) ($\overline{\mathbb{R}}$ ($\overline{\mathbb{R}}$ \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} (\mathbb{Z} $\mathbb{Z$

0.83 以下の(1),(2),(3)に答えよ.

$$(1) \ \ \overrightarrow{\text{ ff M}} \ A = \left(\begin{array}{ccc} 2 & -5 & -3 \\ 1 & 3 & 2 \end{array} \right) \ , \quad B = \left(\begin{array}{ccc} 2 & 0 \\ 1 & -1 \\ -1 & 2 \end{array} \right) \ \text{としたとき, 行列の積} \ AB \ \text{を求めなさい}.$$

$$(2) 行列 \begin{pmatrix} 1 & 4 & 5 & -2 \\ 1 & 7 & 8 & -1 \\ 2 & 5 & 1 & 2 \end{pmatrix}$$
の階数を求めなさい.

(3) 行列式
$$\begin{vmatrix} 1 & -x & 0 & 0 \\ 0 & 1 & -x & 0 \\ 0 & 0 & -1 & -x \\ 1 & -6 & 11 & 6 \end{vmatrix}$$
 が正となる実数 x の条件を求めなさい.

0.84 関数 $f(x) = \frac{1}{\sqrt{1-x}}$ (ただし, x < 1) の x^3 までのマクローリン展開を求めなさい.

0.85 置換積分法を用いて、関数 $f(x) = x^3 \sqrt{1+x^2}$ の不定積分 $\int f(x)dx$ を求めなさい.

0.86 微分方程式 y' = x(1-y) の一般解を求めなさい.

- $\mathbf{0.87}$ 行列 $A=\left[egin{array}{cc} 1 & 2 \ -1 & 4 \end{array}
 ight]$ について、以下の問いに答えよ.
 - (1) Aの固有値を求めよ.
 - (2) Aの固有ベクトルを求めよ.
 - (3) Aを対角化せよ.

(室蘭工業大 2014) (m20145501)

0.88 初期値 y(0) = 3, y'(0) = -4 を満足する次の常微分方程式の解を求めよ.

$$y'' + y' - 6y = 0$$

ただし、
$$y''=rac{d^2y}{dx^2},\; y'=rac{dy}{dx}$$
 の意味である.

(室蘭工業大 2014) (m20145502)

0.89 次の不定積分を求めよ.

$$\int x^2 \cos x dx$$

(室蘭工業大 2014) (m20145503)

0.90 行列 $\begin{pmatrix} -2 & 4 \\ 1 & -5 \end{pmatrix}$ の固有値を求めよ.

(室蘭工業大 2015) (m20155501)

0.91 $y = e^{-5x} \cos 5x$ を x で微分せよ. e は自然対数の底である.

(室蘭工業大 2015) (m20155502)

 $\mathbf{0.92}$ $y=\cos x$ $\left(0\leq x\leq \frac{\pi}{2}\right)$ をx軸のまわりに回転してできる立体の体積を求めよ.

(室蘭工業大 2015) (m20155503)

0.93 微分方程式 $\frac{dy}{dx} = -\frac{3x(y^2+3)}{5y(x^2+2)}$ の一般解を求めよ.

(室蘭工業大 2015) (m20155504)

0.94 $x^2 - 2x + 2y^2 - 3 = 0$ を xy 平面へ図示せよ.

(室蘭工業大 2015) (m20155505)

0.95 不定積分 $I = \int e^{-px} \cos(kx) dx$ を求めよ. ただし, $p \ge k$ はゼロでない定数とする.

(室蘭工業大 2015) (m20155506)

0.96 (1) から(3) の関数をそれぞれ微分せよ.

$$(1) \quad y = -\cos(2x)$$

(2)
$$y = e^{-3x^2}$$

(3)
$$y = \log(2x^2 + 1)$$

(室蘭工業大 2015) (m20155507)

0.97 3 つの行列が、以下のように与えられているとする.

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -2 & 1 \\ -1 & 3 & 0 \end{pmatrix} , \quad B = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} , \quad C = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$$

このとき、次の行列積をそれぞれ求めよ.

$$AB$$
 , CAB , BC

(室蘭工業大 2015) (m20155508)

0.98 3つのベクトルが、以下のように与えられているとする.

$$\boldsymbol{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 , $\boldsymbol{b} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$, $\boldsymbol{c} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$

このとき、 $a \cdot (b \times c)$ を求めよ. さらに、次の行列式を計算せよ.

$$\begin{vmatrix}
1 & 0 & 3 \\
0 & 2 & 2 \\
1 & -1 & 1
\end{vmatrix}$$

(室蘭工業大 2015) (m20155509)

- 次の微分を求めよ. (室蘭工業大 2015) (m20155510) 0.99
- 以下の不定積分を求めよ. ただし, 不定積分では積分定数は省略してよい. 0.100

$$(1) \int \frac{3x+3}{x^2+x-2}$$

(2)
$$\int xe^{2x}dx$$

(室蘭工業大 2015)

- 2変数関数 $z=z(x,y),\ x(r,\theta)=r\cos\theta,\ y(r,\theta)=r\sin\theta$ の偏微分に関する以下の問いに答えよ. 0.101ただし、以下では、r=0の場合は除いて考える、
 - (1) 偏微分 $\frac{\partial z}{\partial r}$, $\frac{\partial z}{\partial \theta}$ を, $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial u}$ を用いて表せ.

$$(2) \quad \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{1}{r}\,\frac{\partial z}{\partial \theta}\right)^2 \, となることを示せ.$$

(室蘭工業大 2015) (m20155512)

0.102次の微分方程式の一般解を求めよ.

(1)
$$(x+1)^2 \frac{dy(x)}{dx} = y(x)$$

(2)
$$\frac{d^2y(x)}{dx^2} + \frac{dy(x)}{dx} - 2y(x) = -2x^2$$
(室蘭工業大 2015) (m20155513)

0.103 次の関数を微分せよ.

$$(1) \ \ y = x^3 \cos 3x$$

(1)
$$y = x^3 \cos 3x$$
 (2) $y = \log\left(\sin\left(\frac{1}{x}\right)\right)$ (3) $y = \left(\frac{x}{x-1}\right)^3$

$$(3) \ \ y = \left(\frac{x}{x-1}\right)^3$$

(室蘭工業大 2015) (m20155514)

- 行列に関する設問に答えよ. 0.104
 - (1) 下記に示す行列 Aの固有値、固有ベクトルを全て求めよ.

$$A = \left(\begin{array}{cc} -5 & -2 \\ 4 & 1 \end{array}\right)$$

(2) 下記に示す行列 B の固有値、固有ベクトルを全て求めよ.

$$B = \left(\begin{array}{rrr} 3 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 3 & 1 \end{array}\right)$$

(室蘭工業大 2015) (m20155515)

0.105 定積分 $\int_0^\infty e^{-x} \sin x dx$ を計算しなさい.

(室蘭工業大 2016) (m20165501)

関数 $f(x) = \sin 2x - \cos 3x$ について、 x^3 までのマクローリン展開を求めなさい. 0.106

> (室蘭工業大 2016) (m20165502)

 $\mathbf{0.107}$ 3つのベクトル $\mathbf{u}=(1,0,-1), \ \mathbf{v}=(1,2,1), \ \mathbf{r}=(0,-3,2)$ がある. $\mathbf{p}=(1,1,1)$ としたとき, 関係式 $\mathbf{p} = \alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{r}$ を満たす係数 α , β , γ を求めなさい.

> (室蘭工業大 2016) (m20165503)

0.108 以下の行列 *A* の行列式を求めなさい.

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 & -1 \\ 2 & 1 & -1 & 3 \\ 3 & -1 & 1 & 2 \\ -1 & 3 & 2 & 1 \end{array}\right)$$

(室蘭工業大 2016) (m20165504)

0.109 定積分 $\int_0^\infty \frac{1}{(2x+1)(x+1)} dx$ を計算しなさい.

(室蘭工業大 2016) (m20165505)

0.110 微分方程式 $\frac{dy}{dx} = -y$ を解きなさい.

(室蘭工業大 2016) (m20165506)

0.111 行列に関する以下の問いに答えよ.

$$(1) \begin{pmatrix} 1 & 1 & -2 \\ 2 & -1 & 1 \\ 3 & 2 & -4 \end{pmatrix}$$
の逆行列を計算せよ.

(2) (1) で求めた逆行列を利用して,

$$\begin{pmatrix} 1 & 1 & -2 \\ 2 & -1 & 1 \\ 3 & 2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 7 \\ -3 \end{pmatrix}$$

$$O(x, y, z を求めよ.)$$

(室蘭工業大 2016) (m20165507)

0.112 直交座標系の任意の点 P(x,y,z) において、ベクトル場 A を考える.

 \mathbf{A} を $\mathbf{A} = (A_x, A_y, A_z) = (x, y, z)$ とし、原点を中心として半径 a の球面を閉曲面 S とした時、以下の問いに答えよ、

- (1) 閉曲面 S 上の任意の点における法線ベクトル n (|n|=1) を求めよ.
- (2) 閉曲面 S 上全体にわたる面積分 $\iint_S \mathbf{A} \cdot \mathbf{n} \ dS$ を求めよ.
- (3) 閉曲面 S 内全体にわたる体積分 $\iiint \operatorname{div} \mathbf{A} \ dV = \iiint \nabla \cdot \mathbf{A} \ dV$ を求めよ.

(室蘭工業大 2016) (m20165508)

0.113 以下の微分を計算せよ.

$$\frac{d\sin^3 x}{dx}$$

(室蘭工業大 2016) (m20165509)

0.114 以下の不定積分を計算せよ. なお、積分定数は省略してよい.

$$\int \frac{-x^2 + 2x + 1}{x^3 - x^2 + x - 1} dx$$

(室蘭工業大 2016) (m20165510)

0.115 以下の不定積分を計算せよ. なお, 積分定数は省略してよい.

$$\int xe^{-jx}dx \qquad \quad (j \ \mathrm{tk 虚数単位を表す})$$

(室蘭工業大 2016) (m20165511)

- 0.116 微分方程式に関する以下の問いに答えよ.
 - (1) $\frac{dy}{dx} 2e^{x+y} = 0$ の一般解を求めよ.
 - (2) $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 4e^x \quad \mathcal{O}$ 一般解を求めよ.

(室蘭工業大 2016) (m20165512)

0.117 次の行列 A の固有値と固有ベクトルを求めよ.

$$A = \left(\begin{array}{cc} 2 & 1 \\ 2 & 3 \end{array}\right)$$

(室蘭工業大 2016) (m20165513)

0.118 以下の 3 つのベクトル \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} が一次独立であるとき, 実数 x が満たす条件を求めよ.

$$\overrightarrow{a} = \begin{pmatrix} 1 \\ 1 \\ x \end{pmatrix}, \qquad \overrightarrow{b} = \begin{pmatrix} 2 \\ -1 \\ x \end{pmatrix}, \qquad \overrightarrow{c} = \begin{pmatrix} 1 \\ x \\ 1 \end{pmatrix}$$

(室蘭工業大 2016) (m20165514)

0.119 $D: 0 \le y \le x \le 1$ により定義される領域を D として、次の重積分を計算せよ.

$$I = \iint_D (2x + 3y^2) dx dy$$

(室蘭工業大 2016) (m20165515)

0.120 次の微分方程式の一般解を求めよ.

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 3y = 5e^{2x}$$

(室蘭工業大 2016) (m20165516)

0.121 $a = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ の両方に直交する単位ベクトルを求めなさい.

(室蘭工業大 2017) (m20175501)

0.122 a_1, a_2, \dots, a_r が互いに直交するとき、これらのベクトルは 1 次独立であることを示しなさい. ただし、 $a_1 \neq 0, a_2 \neq 0, \dots, a_r \neq 0$ とします.

(室蘭工業大 2017) (m20175502)

0.123 関数 $f(x) = x^{40} - x^{20}$ の x = 1 における 2 次のテイラー近似を求めなさい. さらに、その結果を使って、f(1.002) の近似値を計算しなさい.

(室蘭工業大 2017) (m20175503)

0.124 $\int_0^T e^{i\frac{2\pi mt}{T}} e^{-i\frac{2\pi nt}{T}} dt$ を計算しなさい.

ただし、i は虚数単位、m と n は正の整数、T は正の実数とする.

(室蘭工業大 2017) (m20175504)

0.125 次の微分方程式の一般解を求めよ.

(1)
$$(x^2 - 4)\frac{dy}{dx} = y$$
 (2) $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 8\sin(2x)$ (\sigma\frac{\text{\text{\frac{g}}}}{\text{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$}}}}}\text{\$\text{\$\text{\$\text{\$}}}}\text{(\text{\$\text{{\$\text{\$\text{\$}}}}\text{\$\text{\$\text{\$\text{\$\text{\$}}}}\text{\$\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$\text{\$}}}}\text{\$\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$}}}\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$\text{\$}}\text{\$\text{\$\text{\$\text{\$}}\tex

- **0.126** 行列 $A=\left(\begin{array}{cc} 1 & -2 \\ 1 & 4 \end{array}\right)$, $B=\left(\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array}\right)$ に関する以下の問いに答えよ.
 - (1) 行列 A の固有値を求め、各固有値に対応する固有ベクトルを求めよ.
 - (2) AX = BA を満足する行列 X を求めよ.

(室蘭工業大 2017) (m20175506)

0.127 以下の微分を計算せよ.

$$\frac{d}{dx} \left\{ \sin^{-1} \left(x^2 - 1 \right) \right\} \qquad \left(0 < x < \sqrt{2} \right)$$
(室蘭工業大 2017) (m20175507)

0.128 以下の不定積分を計算せよ. なお, 積分定数は省略してよい.

(1)
$$\int e^{-3x} \cos(4x) dx$$
 (2) $\int \frac{1}{e^{2x} + 1} dx$ (\sigma \text{\text{\$\bar{g}\$}} \text{\text{\$\frac{2}{x}\$}} \text{\$\frac{2}{x}\$} \text{\$\frac{1}{2}\$} \text{\$\frac{1}{2}\$}

- **0.129** 直交座標系において、スカラー関数 $f=yz^2$ とベクトル関数 $\mathbf{A}=(A_x,\ A_y,\ A_z)=(-y,\ x,\ 1)$ が与えられているとき、以下の問いに答えよ.
 - (1) rot **A** を求めよ.
 - (2) div(fA) を求めよ.
 - (3) 4点 P(1,1,0), Q(-1,1,0), R(-1,-1,0), S(1,-1,0) を頂点とする四角形の辺に沿って $P \to Q \to R \to S \to P$ の順に一周する線積分 $\oint {\bf A} \cdot d{\bf r}$ を求めよ. ただし, $d{\bf r}$ は線積分における微小線素ベクトルを表す.

(室蘭工業大 2017) (m20175509)

0.130 下に示す関数 f(x,y) について以下の問に答えよ.

$$f(x,y) = x^2 + y^2 - 6x - 2y + xy + 11$$

- (1) f(x,y) を x で偏微分せよ.
- (2) f(x,y) を y で偏微分せよ.
- (3) f(x,y) の極小値を求めよ.

(室蘭工業大 2017) (m20175510)

0.131 次の微分方程式の解を求めよ.

$$2x - 2xy + y' = 0$$

(室蘭工業大 2017) (m20175511)

0.132 積分せよ.

$$\iint_D 2y dx dy \quad , \quad D : 1 \le x \le 2, \ x \le y \le 2x^2$$
 (室蘭工業大 2017) (m20175512)

- **0.133** 2次正方行列 $A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$ について以下を答えよ.
 - (1) Aの固有多項式と固有値を求めよ.
 - (2) Aの各々の固有値に対する固有ベクトルを求めよ.

(室蘭工業大 2018) (m20185501)

0.134 次の不定積分を求めよ.

$$\int (\log x)^2 dx$$

(室蘭工業大 2018) (m20185502)

0.135 次の微分方程式の一般解を求めよ.

$$y'' + 3y' + 2y = \cos x$$

(室蘭工業大 2018) (m20185503)

0.136 次の連立方程式 (1) を解け.

$$-x + 2y = 1
-x + 3y + z = 2
x - y + 2z = -2$$
(1)

(室蘭工業大 2018) (m20185504)

0.137 関数 (1) と (2) を x で微分せよ.

(1)
$$y = \log(x^3 + 4x^2 + 5x + 2)$$

(2)
$$y = \cos\left(x^2 + \frac{2}{x}\right)e^{-x}$$

(室蘭工業大 2018) (m20185505)

0.138 次の積分の値を求めよ.

$$I = \iint_D \frac{1 - 3y^2}{x^2} dy dx$$
 $D = \{1 \le x \le 2, \ 0 \le y \le x\}$

(室蘭工業大 2018) (m20185506)

0.139 $\frac{d^2}{dx^2}\left(\frac{1}{2x-1}\right)$ を計算せよ、ただし、 $x \neq \frac{1}{2}$ とする、

(室蘭工業大 2018) (m20185507)

- 0.140 積分に関する以下の問いに答えよ. ただし, 不定積分では積分定数は省略してよい.
 - (1) 不定積分 $\int \frac{x}{x^2-2x-8} dx$ を計算せよ.
 - (2) 定積分 $\int_0^{\frac{\pi}{2}} x \sin 4x dx$ を計算せよ.

(室蘭工業大 2018) (m20185508)

0.141 行列 $A = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$ に関する以下の問いに答えよ.

(1)
$$A^2 = \begin{pmatrix} \cos 2\theta & -\sin 2\theta & 0 \\ \sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
が成り立つことを示せ.

(2) 行列式 |A| を計算せよ.

- **0.142** 常微分方程式 $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 13\sin 2x$ に関する以下の問いに答えよ.
 - (1) この方程式の右辺がゼロの場合の解(同次解) y_0 を求めよ.
 - (2) 特解 y_1 を $y_1 = A \sin 2x + B \cos 2x$ の形を仮定して求めよ. ただし, A, B は定数とする.
 - (3) 初期条件を, x = 0で, y = 0, $\frac{dy}{dx} = 2$ として, 解 y を求めよ.

- 0.143 ベクトル解析に関する以下の問いに答えよ.
 - (1) $f(\mathbf{r}) = f(x, y, z)$ を任意のスカラー場として、 $\nabla \times (\nabla f(\mathbf{r})) = 0$ が成り立つことを示せ. ここに、 \mathbf{i} , \mathbf{j} , \mathbf{k} をそれぞれ x, y, z 方向の単位ベクトルとして、 $\nabla \equiv \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}$ である.
 - (2) $f(\mathbf{r}) = |\mathbf{r}|$ のとき、 $\nabla f(\mathbf{r})$ を計算せよ. ただし、 $|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$ とする.

0.144 以下の行列式の値を求めなさい.

$$\begin{vmatrix} 3 & -1 & 2 & -1 \\ 2 & 1 & 4 & 1 \\ -4 & 2 & 1 & 3 \\ -1 & 1 & 2 & -2 \end{vmatrix}$$

 $\mathbf{0.145}$ $A = \left(egin{array}{cc} 2 & -1 \\ 1 & 3 \end{array} \right)$ のとき,以下の行列

$$2A^3 - 9A^2 + 10A + 8E$$

を求めなさい. ただし, E は単位行列とする.

0.146 以下の積分の値を求めなさい. ただし、 \mathbb{R} はすべての実数の集合とする.

$$\iint_A xy \, dx \, dy, \quad \text{ $\not{\tau}$ if \cup, } A = \left\{ (x,y) \in \mathbb{R}^2 \ : \ x \ge 0, \ y \ge 0, \ 2x + y \le 2 \right\}$$

0.147 関数 $e^x \sin x$ に関するマクローリン展開について、 x^3 の項まで書きなさい. e は自然対数の底とする.

0.148 以下の微分方程式を解きなさい.

$$\frac{dy}{dx} = -\frac{x}{y}$$

0.149 つぎの微分、積分を計算せよ. なお、不定積分では積分定数を省略してよい.

(1)
$$\frac{d(e^{-2x^2})}{dx}$$
 (2) $\int \frac{2x^2 - 4}{x^3 - 2x^2} dx$ (3) $\int_2^3 \frac{x}{\sqrt{x - 1}} dx$ (\sigma \text{\sigma} \text{\vec{\pi}} \text{\pi} \text{\pi} \text{\pi} \text{\pi} \text{2021}) \text{ (m20215501)}

0.150 つぎの微分方程式の一般解を求めよ

- ${f 0.151}$ 2次元直交座標系における任意の点 P(x,y) の座標を変換する行列について、以下の問いに答えよ.
 - (1) 点 P を x 軸に対称な座標に変換する行列 A を示せ.
 - (2) 点 P を,原点を中心として反時計回りに $\frac{\pi}{6}$ だけ回転させる行列 B を示せ.
 - (3) 点 P を直線 $y = \frac{1}{\sqrt{3}}x$ に対して対称な座標に変換する行列 C を求めよ.

(室蘭工業大 2021) (m20215503)

- **0.152** 直交座標系において、ベクトル関数 $\mathbf{A} = (A_x, A_y, A_z) = (2y, -2x, z)$ が与えられているとき、以下の問いに答えよ、ただし、 $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ である。
 - (1) $\nabla(A \cdot A)$ (= grad($A \cdot A$)) を求めよ.
 - (2) $\nabla \cdot (xyzA)$ $(=\operatorname{div}(xyzA))$ を求めよ.
 - (3) $\nabla \times A$ (= rot A) を求めよ.
 - (4) 4点 P(1,1,0), Q(-1,1,0), R(-1,-1,0), S(1,-1,0) を頂点とする四角形の辺に沿って $P \to Q \to R \to S \to P$ の順に一周する線積分 $\oint {\bf A} \cdot d{\bf r}$ を求めよ. ただし、 $d{\bf r}$ は線積分における線素ベクトルを表す.

(室蘭工業大 2021) (m20215504)

- ${f 0.153}$ 2次正方行列 $A=\left[egin{array}{cc} a & b \\ c & d \end{array}
 ight]$ について以下を答えよ.
 - (1) *A* が正則であるための条件を示せ.
 - (2) またそのときの逆行列を求めよ.

(室蘭工業大 2021) (m20215505)

0.154 次の不定積分を求めよ.

$$\int x \cos(4x) dx$$

(室蘭工業大 2021) (m20215506)

0.155 次の微分方程式の一般解を求めよ.

$$y'' - 3y' - 4y = \cos x$$

ただし、 $y'' = \frac{d^2y}{dx^2}$ 、 $y' = \frac{dy}{dx}$ の意味である.

(室蘭工業大 2021) (m20215507)

 ${f 0.156}$ 次の微分方程式の一般解を求めよ. なお,任意の定数は $C_1,\,C_2$ を用いること.

$$y'' + 2y' + y = x^2$$

ただし、
$$y'' = \frac{d^2y}{dx^2}$$
、 $y' = \frac{dy}{dx}$ の意味である.

(室蘭工業大 2022) (m20225501)

0.157 次の不定積分を求めよ.

$$\int xe^x dx$$

(室蘭工業大 2022) (m20225502)

0.158 次の行列 *A* の固有値及び固有ベクトルを求めよ.

$$A = \left(\begin{array}{cc} 5 & 3\\ 4 & 9 \end{array}\right)$$

(室蘭工業大 2022) (m20225503)

- **0.159** (1) 関数 $f(x) = \cos 2x + \sin(-3x)$ に対して、1次から3次までの導関数を求めなさい.
 - (2) (1) で求めた導関数を用いて、関数 $f(x) = \cos 2x + \sin(-3x)$ について x^3 までのマクローリン 展開を求めなさい.

(室蘭工業大 2022) (m20225504)

 ${f 0.160}$ 不定積分 $\int x^2 e^{\frac{\pi}{2}} dx$ を計算しなさい. 積分定数は省略してよい.

(室蘭工業大 2022) (m20225505)

0.161 2 つのベクトル u = (1, 2, 3), v = (3, 2, 1) と直交する単位ベクトルを求めなさい.

(室蘭工業大 2022) (m20225506)

0.162 以下の行列 A の固有値と固有ベクトルを求めなさい.

$$A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 2 & -1 & 2 \\ 0 & 2 & 1 \end{array}\right)$$

(室蘭工業大 2022) (m20225507)

0.163 つぎの微分を計算せよ. $\frac{d(5^{2x})}{dx}$

(室蘭工業大 2022) (m20225508)

- 0.164 つぎの積分を計算せよ. なお, 不定積分では積分定数を省略してよい.
 - (1) $\int \sin^3 x \ dx$

(2)
$$\int_0^1 x\sqrt{1-x}\ dx$$

(室蘭工業大 2022) (m20225509)

- 0.165 つぎの微分方程式の一般解を求めよ.
 - $(1) \quad \frac{dy}{dx} 2y = 2$
 - (2) $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$
 - (3) $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 4e^{-2x}$

(室蘭工業大 2022) (m20225510)

0.166 行列 $A = \begin{pmatrix} a^5 & 0 & a^5 & a^5 \\ 0 & 2 & 1 & 1 \\ a^5 & 1 & a^5 & 2a^5 \\ a^5 & 1 & 2a^5 & a^5 \end{pmatrix}$ について、以下の問いに答えよ.

(1) A の行列式を求めよ.

(2)
$$a = -\frac{1}{2} - j \frac{\sqrt{3}}{2}$$
 のとき、 A の行列式の値を示せ、 ただし、 $j = \sqrt{-1}$ である.

(室蘭工業大 2022) (m20225511)

0.167 直角座標系 (x, y, z) において、スカラー関数 $f = x^2 + y^2 + 2z$ が与えられているとき、

以下の問いに答えよ. ただし, $\nabla = \left(\frac{\partial}{\partial x}, \, \frac{\partial}{\partial y}, \, \frac{\partial}{\partial z}\right)$ である.

- (1) ∇f (= grad(f)) を求めよ.
- (2) $\nabla \cdot (\nabla f)$ (= div(grad(f))) を求めよ.
- (3) $\nabla \times (\nabla f)$ $(= \operatorname{rot}(\operatorname{grad}(f)))$ を求めよ.
- (4) 点 A(1,0,0) から点 B(0,1,0) に向かう経路 C 上の線積分 $\int_C (\nabla f) \cdot d\mathbf{r}$ を求めよ.

ただし、dr は線積分における線素ベクトルを表す。また、経路 C は任意に設定してよい。

(室蘭工業大 2022) (m20225512)