[選択項目] 年度:1991~2023年 大学:東北大

- **0.1** f(x) は x の多項式で,等式 $\begin{cases} f(0) = 0 \\ f(x) f(x-1) = (2x-1)^3 \end{cases}$ を満たす.次の問いに答えよ.
 - (1) f(x) を求めよ.
 - (2) 次の級数の和を計算せよ.

$$(\sin x + 1)^3 + (\sin x + 3)^3 + (\sin x + 5)^3 + \dots + (\sin x + 2n - 1)^3$$
(東北大 1993) (m19930501)

 $y = -\frac{1}{2}x^2 + x$ 0.2 放物線

放物線 $y=-\frac{1}{2}x^2+x \tag{*}$ の上の点 P(a,b) において,放物線より上側に中心 Q(X,Y) をもつ半径 $\sqrt{(a-1)^2+1}$ の円 C が接し ている.次の問いに答えよ.

- (1) 円 C の中心 Q の座標 (X,Y) を a で表せ.
- (2) 点 P が放物線 (*) 上を動くとき,円 C の中心 Q が描く曲線の方程式を求めよ.
- (3) 中心 Q が直線 x + 2y = 6 に最も近づくとき、中心 Q の座標 (X, Y) を求めよ.

(東北大 1993) (m19930502)

- なめらかな曲線 y = f(x) について、次の問いに答えよ. 0.3
 - (1) 曲線上の点 P(a,b) における法線と x 軸との交点の座標が $(\frac{1}{2}(a+b^2),0)$ であるとき, 関数 y=f(x)の満たす微分方程式を導け.
 - (2) (1) の微分方程式を満たし、点(0,2) を通る曲線の方程式を求めよ. また、 $-3 \le x \le 1$ におい て、この曲線の概形を描け、必要ならば、 $e=2.718\cdots$ 、 $e^{-1}=0.367\cdots$ 、 $e^{-1.5}=0.223\cdots$ を 使ってもよい.

- **0.4** 2行 2列の行列 $P=\begin{pmatrix}1-p&p\\q&1-q\end{pmatrix}$ と Q=I-P について、次の問いに答えよ。ただし、I は
 - (1) 点 P^{-1} が存在する条件を書き、そのとき P^{-1} を求めよ.
 - (2) 正の整数 n に対して, $Q^n = (p+q)^{n-1}Q$ を証明せよ.
 - (3) |P+q-1|<1 のとき, $\lim_{n \to \infty} P^n$ を求めよ.

(東北大 1993) (m19930504)

xyz 空間内の,次の不等式を満たす部分をGとする. 0.5

$$0 < x < a, \ 0 < y < x(a-x), \ 0 < z < by^2$$

ただし、a,b は正数とする.次の問いに答えよ.

- (1) G を平面 $x = \frac{a}{2}$ で切ったとき、切り口の面積を求めよ.
- (2) Gの体積 V を求めよ.
- (3) $a \ge b$ に関係 $b = e^{-7a}$ があるとき、V を最大にする a の値を求めよ.

(東北大 1994) (m19940501)

関数 f(x) > 0 は閉区間 [a,b] で微分可能であり、導関数 f'(x) は連続であるとする。x 軸上に定点 A(a,0) と動点 P(x,0) をとる. ただし, $a < x \le b$ とする. 点 A, 点 P において x 軸に垂直な 2 直線 と曲線 y = f(x) との交点をそれぞれ B,Q とする. 次の問いに答えよ.

- (1) 弧 BQ の長さを求める式を書け.
- (2) 曲線 y = f(x), x 軸, 直線 AB, 直線 PQ で囲まれた部分の面積と弧 BQ の長さの比が一定値 k であるとき、この曲線の方程式を導け、

(東北大 1994) (m19940502)

0.7 2行2列の行列 P と単位行列 E をそれぞれ

$$P = \begin{pmatrix} 1 + \cos x & \sin x \\ \sin x & 1 - \cos x \end{pmatrix} , \quad E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

とする.次の問いに答えよ.

- (1) P^2 を計算せよ.
- (2) 正整数 n に対して P^n を求めよ.
- (3) 正整数 n に対して $(P+E)^n$ を求めよ.

(東北大 1994) (m19940503)

- **0.8** xy 平面上に $2 \stackrel{\cdot}{=} P(a,b)$, Q(c,d) がある. 原点 O と点 P,Q は同一直線上にはなく,また $d \neq 0$ とする. 点 R をベクトル \overrightarrow{OR} がベクトル \overrightarrow{OP} とベクトル \overrightarrow{OQ} の和に等しくなるようにとる. 次の問いに答えよ.
 - (1) 点 P,R を通る直線と x 軸との交点 S(e,0) の x 座標 e を a,b,c,d で表わせ.
 - (2) ベクトル \overrightarrow{OP} と \overrightarrow{OQ} を2辺とする平行四辺形の面積を求めよ.
 - (3) 点P を点S に移し、点Q を点T(0,d) に移す一次変換をK とする。K による点R の像を求めよ。
 - (4) (3) で定義した一次変換 K を表す行列を求めよ.

(東北大 1994) (m19940504)

- 0.9 次の問いに答えよ.
 - (1) $\sin^4\theta \cos^2\theta = a_0 + a_2\cos 2\theta + a_4\cos 4\theta + a_6\cos 6\theta$ とおくとき、 a_0 , a_2 , a_4 , a_6 を定めよ.
 - (2) 変数変換 $x = a \sin^2 \theta$ (a > 0) を用いて、次の積分の値を求めよ.

$$\int_0^a x\sqrt{ax-x^2}dx$$

(3) 円柱 $(x-a)^2 + (y-a)^2 \le a^2$ が、 2 平面 z=ax、 z=-ax により切り取られる部分の体積を求めよ。 ただし、a>0 とする。

(東北大 1995) (m19950501)

- **0.10** 滑らかな曲線 y=f(x) 上の第 1 象限にある 1 点 P における法線が x 軸と交わる点を N とし、次の問いに答えよ.
 - (1) 長さ *PN* を求めよ.
 - (2) PN と点 P の y 座標の平方の比が一定値 k であるとき,点 (0,1/k) を通る曲線の方程式を求めよ.

(東北大 1995) (m19950502)

 $egin{array}{lll} \mathbf{0.11} & 2 行 2 列の行列 \ A = \left(egin{array}{cc} a & b \ c & d \end{array}
ight) & \mathrel{ ext{$\cal E$}} & B = \left(egin{array}{cc} e & f \ g & h \end{array}
ight)$ から 4 行 4 列の行列

$$C = \begin{pmatrix} ae & af & be & bf \\ ag & ah & bg & bh \\ ce & cf & de & df \\ cg & ch & dg & dh \end{pmatrix}$$

を作り, $C=A\otimes B$ と表わす. $X=\left(egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right),\ Y=\left(egin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$ とおいて,次の問いに答えよ.

- (1) $X \otimes Y$, $Y \otimes X$ を求めよ.
- (2) $X^{-1} \otimes Y^{-1}$ を求めよ. ただし, A^{-1} は行列 A の逆行列を表わす.
- (3) (1) で求めた 4 行 4 列の行列 $X \otimes Y$ の固有値を求めよ.

(東北大 1995) (m19950503)

- 0.12 次の問いに答えよ.
 - (1) 関数 $\frac{1}{1-x}$ を

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + R_n(x)$$

とおくとき, |x|<1 の範囲で $\lim_{n\to\infty}R_n(x)=0$ となることを示せ.

- (2) (1) を利用して、関数 $\frac{1}{(1-x)^2}$ の x に関するべき級数展開を |x|<1 の範囲で求めよ.
- (3) (2) の結果を利用して、 $\sin x$ に関するべき級数 $\sum_{n=0}^{\infty} (n+1)(\sin x)^{2n}$ の和を求めよ.ここに、 $|x|<\frac{\pi}{2}$ とする.

(東北大 1996) (m19960501)

- 0.13 次の問いに答えよ.
 - (1) 次の微分方程式を y(0) = a の条件の下に解け.

$$\frac{dy}{dx} + \frac{1}{2}xy = x + \frac{1}{4}x^3 \tag{*}$$

(2) x の関数 $y(x) = \int_0^\infty e^{-t^2} (\cos xt + x^2t) dt$ について、式 (*) が成り立つことを示せ、ただし、微分と積分の順序は交換できるものとする.

(東北大 1996) (m19960502)

- **0.14** 3つの 1 次変換を f,g,h とし,これらを表す行列をそれぞれ A,B,C とおく,また,任意の点 P(x,y) の 2 つの合成変換 $f \circ h$, $h \circ g$ を $f \circ h(P) = f(h(P)), h \circ g(P) = h(g(P))$ と定義し, $f \circ h = h \circ g$ が成立するとする. $A = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$, $C = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ であるとき,次の問いに答えよ.た だし、a は $a \neq 0$ の実定数とする.
 - (1) 点 P の変換 h により移される点を P' とする. P' の原点からの距離は,P の原点からの距離に等しいことを示せ.
 - (2) qを表す行列 Bを求めよ.
 - (3) 円 $x^2 + y^2 = 1$ 上の点 Q の変換 $f \circ h$ により移される点を Q' とする. Q' の原点からの距離の最大値と最小値を求めよ.

(東北大 1996) (m19960503)

- 0.15 関数 $F(x)=x\log x-\frac{1}{\sqrt{1+x^2}-x}$ の導関数を F'(x) と表し、 関数 f(x) を f(x)=F'(x) と定義する.

 - (2) 等式 f(c) = 0 (1 < c < 3) を満たす c が少なくとも 1 つ存在することを示せ.

(東北大 2001) (m20010501)

- **0.16** 関数 $f_1(x)$ と $f_2(x)$ を $f_1(x) = \frac{1}{10}e^{2x}$, $f_2(x) = x^2\log(x+1)$ と定義する.
 - (1) 定積分 $S_1 = \int_0^a f_1(x)dx$, $S_2 = \int_0^b f_2(x)dx$ を求めよ.
 - (2) a+b=1 という関係があるとき、 $S=S_1+S_2$ を b の関数として表せ.
 - (3) 変数 a と b は

$$a + b = 1$$
, $0 < a < 1$, $0 < b < 1$

を満たすと仮定する. $S = S_1 + S_2$ が極値をとる条件を a と b により表せ.

(東北大 2001) (m20010502)

- **0.17** 点 X(x,y) を原点 O のまわりに角 θ だけ回転して得られる点を X'(x',y') とする.
 - (1) OX の長さは r であり、OX の方向は x 軸の正のむきを原点 O のまわりに α だけ回転した方 向にあるとする. このとき, x,y,x',y' を r,α,θ により表わせ. ただし, 角 θ と角 α の回転の 方向は同一であるとする.

 - (3) 点 $A(x_1,y_1)$, 点 $B(x_2,y_2)$ と原点 O からなる三角形 OAB を考える. 三角形 OAB を原点 Oのまわりに角 θ だけ回転して得られる三角形を OA'B' とする. 三角形 OAB の面積 S と三角 形 OA'B' の面積 S' を与える公式

$$S = \frac{1}{2}|x_1y_2 - x_2y_1|, \quad S' = \frac{1}{2}|x_1'y_2' - x_2'y_1'|$$

を用いて、S = S' であることを示せ.

- (4) 上記 (3) で定義した三角形 OA'B' の辺 A'B' が直線 y'=1 上に位置し, $S'=\frac{1}{2}$ であるとする. この場合に、 x_1, y_1, x_2, y_2 が満たすべき条件を示せ.
- (5) 上記 (4) において、さらに、 $x_1'=0,\;x_2'>0,\;\theta=\frac{\pi}{4}$ とする. 三角形 OAB を図示せよ. (東北大 2001) (m20010503)
- 関数 f(x) のマクローリン展開は以下のように与えられる. 0.18

$$f(x)\sim f(0)+f'(0)x+rac{1}{2}f''(0)x^2+\cdots$$
ただし, f' と f'' は,それぞれ f の導関数と第 2 次導関数を示す.

- $f(x) = \frac{1}{1+x^2}$ をマクローリン展開し、 x^2 の項まで示せ.
- (2) 以下の関係が成り立つことを示せ.

$$\frac{d}{dx}\left(\operatorname{Tan}^{-1}x\right) = \frac{1}{1+x^2}$$

ただし、関数 $y = \operatorname{Tan}^{-1} x$ は、関数 $y = \tan x$ の逆関数であり、原点を通る.

- (3) 関数 $F(x) = \operatorname{Tan}^{-1} x$ について、 $-\infty < x < \infty$ での増減・極値・グラフの凹凸・変曲点を調べよ.
- (4) y = F(x) のグラフの概形を描け.

(東北大 2003) (m20030501)

0.19

関数
$$f(x)$$
 は、微分方程式
$$x^2 \frac{d^2 f(x)}{dx^2} - 2x \frac{df(x)}{dx} + 2f(x) = 0 \qquad (x \ge 1)$$
 および、初期条件
$$df$$

$$x=1$$
 のとき $f=1$, $\frac{df}{dx}=0$ (b) を満たす. このとき, 以下の問 $(1)\sim(5)$ に答えよ.

(1) 方程式 (a) は、変数変換 $t = \log x$ によって、以下の微分方程式に帰着することを示せ.

$$t = 0 \, \mathcal{O} \, \mathcal{L} \, \stackrel{\stackrel{\scriptstyle \leftarrow}{\circ}}{\circ} \quad y = 1 \,, \, \frac{dy}{dt} = 0 \tag{d}$$

となることを示せ.

(2) 方程式(c)の一般解は

$$y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} \tag{e}$$

で与えられる. 方程式 (c) および初期条件 (d) を満たす実数 $\lambda_1, \lambda_2, C_1, C_2$ を求めよ.

- (3) 初期条件(b)のもとで方程式(a)の解を求めよ.
- (4) $z(t)=rac{dy(t)}{dt}$ と定義する. いま, 適切な 2×2行列 A を定義すれば, 方程式 (c) は

$$\begin{pmatrix} \frac{dy(t)}{dt} \\ \frac{dz(t)}{dt} \end{pmatrix} = A \begin{pmatrix} y(t) \\ z(t) \end{pmatrix}$$

(5) 行列 A の固有値を求め、問 (2) で求めた λ_1, λ_2 と比較せよ.

(東北大 2003) (m20030502)

- 行列 A を $A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$ で定義する. 0.20
 - (1) 行列 A の逆行列 A^{-1} を求めよ.
 - (2) 行列 A によって表される xy 平面上の線形変換を f とする. 直線 y=ax 上の任意の点の f によ る像が同じ直線 y = ax 上にあるような a の値を求めよ.
 - (3) 行列 U を $U = \begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix}$ で定義する. このとき, $U^n = \begin{pmatrix} \alpha^n & n\alpha^{n-1} \\ 0 & \alpha^n \end{pmatrix}$ が成り立つことを
 - (4) 行列 P を $P = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$ で定義する. このとき, $P^{-1}AP$ を求めよ. また, その結果と問 (3) で証明した式を用いて A^n を求めよ. ただし, n は自然数とする.

(東北大 2003) (m20030503)

実数 y の関数: 0.21

$$f(y) = \frac{1}{1 + e^{-\beta y}} , \qquad (-\infty < y < \infty)$$

を定義する. ここで、 β は非負の実数値のみをとる定数である. このとき, 以下の問いに答えよ.

(1) β の値が以下の3つの場合:

a)
$$\beta \longrightarrow +\infty$$
 , b) $\beta = 0$, c) その他の場合. の各々について, $x = f(y)$ のグラフを描け.

- (2) 関数 x = f(y) の逆関数 $y = f^{-1}(x)$ を求めよ.
- (3) 以下の不定積分を求めよ.

$$\int \log(1-x)dx$$

ただし、log は自然対数を表す.

(4) 以下の定積分を求めよ.

$$g(x) \equiv \int_0^x f^{-1}(z)dz$$

ただし、xの定義域は $0 \le x \le 1$ であり、 $\lim_{x \to 0} x \log x = 0$ の意味で $0 \log 0 = 0$ とする.

(5) 関数 $g(x) - \alpha x$ を最小化する x を求めよ. ただし x の定義域は $0 \le x \le 1$, α は正の実数値の みをとる定数とする.

0.22 関数 f(x) の x = a を中心とするテイラー展開は以下のように与えられる.

$$f(x) \sim f(a) + \sum_{n=1}^{\infty} \frac{1}{n!} f^{(n)}(a) (x-a)^n = f(a) + f'(a) (x-a) + \frac{1}{2} f''(a) (x-a)^2 + \cdots$$

ただし、 $f^{(n)}(x)$ は f(x) の第 n 次導関数 $\frac{d^nf}{dx^n}$ を表す。また、f'(x) および f''(x) は f(x) の導関数 $\frac{df}{dx}$ および第 2 次導関数 $\frac{d^2f}{dx^2}$ をそれぞれ表す。特に、-1 < x < 1 に対する関数 $\frac{1}{1-x}$ および $-\infty < x < \infty$ に対する関数 e^x の x=0 を中心とするテイラー展開はそれぞれ次のように与えられる。

$$\frac{1}{1-x} \sim \sum_{n=0}^{\infty} x^n \qquad , \qquad e^x \sim \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

xを実数とし、関数 g(x) と h(x) を

$$g(x) = e^{x^2}$$
 , $h(x) = \frac{e^{x^2}}{2 - x}$

と定義する.

- (1) g(x) の x = 0 を中心とするテイラー展開を求めよ.
- (2) 問 (1) の結果を用いて, h(x) の x = 0 を中心とするテイラー展開の x^2 の項までを求めよ.
- (3) h(x) の導関数 h'(x) を求めよ.
- (4) y = h(x) の $-\infty < x < \infty$ における発散する点, 極値を与える点に注意して, グラフの概略を描け.

(東北大 2004) (m20040502)

- 0.23 原点 O(0,0,0) を中心とする半径が 1 の球(単位球)に内接する正四面体を考える. 球の中心から各項点 A,B,C,D に至る 4 本のベクトルを $\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC},\overrightarrow{OD}$ とし、 \overrightarrow{OA} を z 軸に、 \overrightarrow{OB} を xz 平面に置き, その 4 本の内,任意の 2 本のベクトルのなす角度を θ とする. この時,各ベクトルの成分は $\overrightarrow{OA} = (0,0,1)$, $\overrightarrow{OB} = (-\sin\theta,0,\cos\theta)$, $\overrightarrow{OC} = (\sin\theta\cdot\cos60^\circ,-\sin\theta\cdot\sin60^\circ,\cos\theta)$, $\overrightarrow{OD} = (\sin\theta\cdot\cos60^\circ,\sin\theta\cdot\sin60^\circ,\cos\theta)$ と表せる.
 - (1) $\cos \theta$, $\sin \theta$ の値を求めよ.
 - (2) 単位球と頂点 B で接する平面の方程式を求めよ.
 - (3) 正四面体の1辺の長さを求めよ.
 - (4) 正四面体の体積を求めよ.

(東北大 2004) (m20040503)

- **0.24** 2次曲線 $C: 3x^2 2\sqrt{3}xy + 5y^2 18 = 0$ は、行列 $\mathbf{A} = \begin{pmatrix} 3 & -\sqrt{3} \\ -\sqrt{3} & 5 \end{pmatrix}$ 、ベクトル $\mathbf{p} = \begin{pmatrix} x \\ y \end{pmatrix}$ を用いて、 $t\mathbf{p}\mathbf{A}\mathbf{p} 18 = 0$ と表すことができる。ただし、 $t\mathbf{p} = (x \ y)$ である。
 - (1) 行列 $m{A}$ の固有値 λ_1 , λ_2 を求め, それぞれに対応する大きさ 1 の固有ベクトル $m{u}_1$, $m{u}_2$ を求めよ.
 - (2) ベクトル $\mathbf{p}' = \begin{pmatrix} x' \\ y' \end{pmatrix}$ とし、ある行列 \mathbf{U} を用いて、線形変換 $\mathbf{p} = \mathbf{U}\mathbf{p}'$ を行えば、2 次曲線 C は標準形になる。行列 \mathbf{U} を求め、2 次曲線 C の標準形を x'、y' を用いて表せ.

(3) x 軸と x' 軸のなす角度を求め, x 軸 , y 軸と x' 軸 , y' 軸の関係を図示し, 2 次曲線 C の概形を描け.

- **0.25** x を実数として、関数 f(x) を $f(x) = x^2 e^{ax}$ と定義する. ただし、a は負の定数である.
 - (1) f(x) の導関数 f'(x), 第 2 次導関数 f''(x) を求めよ.
 - (2) $x \to +\infty$ のとき, f(x) の極限 $\lim_{x \to +\infty} f(x)$ を求めよ.
 - (3) f(x) の増減, 極値, グラフの凹凸, 変曲点を調べ, 増減表を書き, y = f(x) の概形を描け.

0.26 x を実数として, 関数 f(x) は微分方程式

$$f''(x) - f(x) = 0$$

の解であり、初期条件「f(0)=0、f'(0)=1」を満たすものとする. さらに、この微分方程式の解 f(x)から関数 g(x) を

$$g(x) = \int_0^x t f(t) dt$$

により定義する.

- (1) 与えられた微分方程式の解 f(x) を求めよ.
- (2) g(1) および g(-1) を求めよ.
- (3) 関数 h(x) を

$$h(x) = \frac{d}{dx} \int_{-x}^{x^2} g(t)dt$$

により定義する. このとき, h(1) を求めよ.

(東北大 2005) (m20050503)

0.27 $m=1,2,\cdots$ に対して $\lim_{x\to\infty}x^me^{-x}=0$ を示せ.

(東北大 2005) (m20050504)

0.28 $x = (x_1, x_2, x_3) \in \mathbb{R}^3, x \neq 0$ において関数 f を

$$f(x) = \frac{1}{|x|}, \quad |x| = \sqrt{x_1^2 + x_2^2 + x_3^2}$$

で定義する.このとき、次の問に答えよ.

$$(1) \quad \nabla f = \left(\frac{\partial f}{\partial x_1}\,,\,\,\frac{\partial f}{\partial x_2}\,,\,\,\frac{\partial f}{\partial x_3}\right),\,\, \\ \\ \text{および}\,\,\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^2}\,\, \\ \\ \not{\epsilon}\,\,\\ \\ \vec{x}\,\\ \vec{x}\,\\ \\ \vec{x}\,\\ \vec{x}\,\\$$

(2) $\varepsilon > 0$ に対して, $S_{\varepsilon} = \{x \in \mathbb{R}^3 ; |x| = \varepsilon\}$ とする. S_{ε} に沿う表面積分

$$\int_{S} \frac{\partial f}{\partial \boldsymbol{n}} dS$$

の値を求めよ. ただし, n は S_{ε} 上の単位外向き法線ベクトルであり, $\frac{\partial f}{\partial n}=\nabla f\cdot n$ は f の n 方向への微分を表す.

(3) S を原点 O を内部に含む \mathbb{R}^3 内の滑らかな閉曲面とするとき, S に沿う表面積分

$$\int_{S} \frac{\partial f}{\partial \boldsymbol{n}} dS$$

の値を求めよ. ただし, n は S 上の単位外向き法線ベクトルである.

0.29 \mathbb{R}^3 において x, y の標準内積を (x,y) で表す. 3 次実対称行列 A を

$$A = \left(\begin{array}{rrr} 3 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{array}\right)$$

で定める.このとき,次の問に答えよ.

- (1) A は相異なる正の固有値 $\lambda_1 < \lambda_2 < \lambda_3$ を持つ. λ_1 , λ_2 , λ_3 , および それらに対する長さ 1 の 固有ベクトル ϕ_1 , ϕ_2 , ϕ_3 をそれぞれ求めよ.
- (2) \mathbb{R}^3 の一次変換 f_i (j=1,2,3) を

$$f_j : x \mapsto (x, \phi_j)\phi_j, \quad j = 1, 2, 3$$

で定める. \mathbb{R}^3 の標準基底に関する f_i の表現行列を P_i とするとき,

$$P_j^2 = P_j$$
, $j = 1, 2, 3$

$$P_i P_k = O$$
, $j \neq k$ のとき

を示せ. ただし, O は零行列である.

(3) $m = 1, 2, \cdots$ に対して、行列 B を

$$B = \lambda_1^{\frac{1}{m}} P_1 + \lambda_2^{\frac{1}{m}} P_2 + \lambda_3^{\frac{1}{m}} P_3$$

と定めるとき, $B^m = A$ が成り立つことを証明せよ.

(東北大 2005) (m20050506)

- **0.30** 円柱面 $x^2 + y^2 = ax$ と球面 $x^2 + y^2 + z^2 = a^2$ で囲まれ、不等式 $x \ge 0$ 、 $y \ge 0$ 、 $z \ge 0$ を満たす領域 を R として、次の間に答えよ.
 - (1) 領域 R の概形を描け.
 - (2) 変数変換 $x = r\cos\theta$, $y = r\sin\theta$ のヤコビアン $J = \frac{\partial(x,y)}{\partial(r,\theta)}$ を求めよ.
 - (3) 領域 R の体積 V を求めよ.

(東北大 2006) (m20060501)

- **0.31** x を実数とし、関数 f(x) を $f(x) = x \sin x$ と定義する. このとき、以下の問に答えよ.
 - (1) 関数 f(x) の導関数 f'(x) および第 2 次導関数 f''(x) を求めよ.
 - (2) f'(x) = 0 を満たすすべての実数 x および f''(x) = 0 を満たすすべての実数 x をそれぞれ求めよ.
 - (3) 関数 y = f(x) の区間 $-2\pi \le x \le 2\pi$ における増減, 極値, グラフの凹凸, 変曲点を調べ, 増減表を書き. グラフの概形を描け.
 - (4) 任意の実数 x について不等式 $|x| \ge \sin |x|$ が成り立つことを証明せよ.

(東北大 2006) (m20060502)

- **0.32** 対称行列 \boldsymbol{A} およびベクトル \boldsymbol{b} を $\boldsymbol{A} = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$, $\boldsymbol{b} = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}$ で定義する.
 - (1) Ax = b を満たすベクトル x を求めよ.

- (2) **A** の固有値および固有ベクトルを求めよ.
- (3) A^n の逆行列を求めよ. ただし, n は自然数とする.

(東北大 2006) (m20060503)

0.33 (1) a, b, c, p, q, r を実数とし,

$$D = \left(\begin{array}{ccc} p & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & r \end{array}\right) , \quad N = \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right)$$

とおく. 任意の自然数kに対し.

$$(D+N)^k = D^k + M$$
, $M = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$

と表されることを示せ、ただし, α , β , γ は適当な実数である.

(2) 3次正方行列 A がある自然数 n に対して $A^n = O$ を満たすとき, $A^3 = O$ であることを示せ、た だし, O は零行列である.

(東北大 2006) (m20060504)

0.34 4次元数ベクトル空間の部分空間 V と W を

$$V = \{(x_1, x_2, x_3, x_4) \mid x_1 + 2x_2 + 4x_4 = 0, \ 2x_1 + 5x_2 - 5x_3 + 6x_4 = 0\}$$
$$W = \{(x_1, x_2, x_3, x_4) \mid x_2 + 5x_4 = 0, \ x_1 + 4x_2 - 5x_3 + 7x_4 = 0\}$$

と定義する. 以下の設問に答えよ.

- (1) V と W の次元を求めよ.
- (2) $V \cap W$ の次元を求めよ.
- (3) $V + W = \{v + w \mid v \in V, w \in W\}$ の次元を求めよ.

(東北大 2006) (m20060505)

- **0.35** $D = \{(x,y) \mid 4x^2 + y^2 < 4, \ x > 0, \ y > 0\}$ とするとき、重積分 $\iint_D xy \, dx dy$ を計算せよ. (東北大 2006) (m20060506)
- **0.36** (1) 関数の積の微分に関するライプニッツの公式を述べよ(証明はしなくてよい).

$$\{f(x)g(x)\}^{(n)} =$$

- (2) x>0 で定義された関数 $h(x)=x^4\log x$ を考える. $\lim_{x\to+0}h(x)$ を求めよ.
- (3) 0 < m < 4 であるような自然数 m に対し、(2) で定義した h(x) の m 階導関数 $h^{(m)}(x)$ を求めよ。また、 $\lim_{x \to +\infty} h^{(m)}(x)$ を求めよ。
- (4) $\lim_{x\to+0} h^{(4)}(x)$ は存在するか.

(東北大 2006) (m20060507)

0.37 3 次正方行列 $A=\begin{bmatrix}1&2&1\\2&1&-1\\3&2&0\end{bmatrix}$ について A^2 , ${}^t\!AA$, A^{-1} を求めよ.ここで, ${}^t\!A$ は A の転置行列を表す.

(東北大 2007) (m20070501)

0.38 行列 $B = \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & -1 & 2 \\ 1 & -2 & 1 & 0 \end{bmatrix}$ で f(v) = Bv と定義される線形写像(1次写像) $f: \mathbf{R}^4 \to \mathbf{R}^3$

0.39 関数 $f(x) = \frac{1}{1 + 2\sin x}$ を x = 0 の近くで 3次までテーラー展開せよ.

(東北大 2007) (m20070503)

$${f 0.40}$$
 領域 $D=\{(x,y)\mid x\geq 0\,,\; y\geq 0\}$ での広義重積分 $\iint_D {dxdy\over (4+2x+y)^3}$ の値を求めよ.
$$(東北大\ 2007) \qquad (m20070504)$$

0.41 x,y を実数とし、 $0 < x < 2\pi$ 、 $0 < y < 2\pi$ の表す領域において、関数 f(x,y) を

$$f(x,y) = \sin x + \sin y - \sin(x+y)$$

と定義する. このとき, 以下の問いに答えよ.

- (1) 関数 f(x,y) の偏導関数 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ を求めよ.
- (2) $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ を満足するすべての点 (x, y) を求めよ.
- (3) f(x,y) の極大値,極小値を求めよ.
- (4) 曲面 z=f(x,y) 上の $x=\frac{\pi}{2}$ 、 $y=\frac{\pi}{2}$ に対応する点における接平面の方程式を求めよ.

(東北大 2007) (m20070505)

- **0.42** y = y(x) $(y \neq 0)$, z = z(x) とする. このとき, 以下の間に答えよ.
 - (1) $z = y^{-4}$ のとき、 $\frac{dz}{dx}$ を y および $\frac{dy}{dx}$ を用いて表せ.
 - (2) 変数変換 $z=y^{-4}$ を用いて、微分方程式 $\frac{dy}{dx}+yP(x)=y^5\,Q(x)$ を z に関する微分方程式に書き表せ、
 - (3) 微分方程式 $\frac{dy}{dx} + xy = \frac{1}{2}xy^5$ の一般解を求めよ.

(東北大 2007) (m20070506)

- **0.43** $x \ge y$ を実数とし、関数 f(x,y) を $f(x,y) = 4 \sqrt{x^2 + y^2}$ と定義する. 不等式 $(x-1)^2 + y^2 \le 1$, $0 \le z \le f(x,y)$ で表される領域を R として、以下の間に答えよ.
 - (1) 領域 R の概形を描け.

- (2) 領域 R の体積を求めよ.
- (3) xy 平面上で不等式 $(x-1)^2+y^2 \le 1$ によって表される領域を D とする. 曲面 z=f(x,y) の D に対応する部分の面積を求めよ.

(東北大 2007) (m20070507)

- **0.44** x を実数とし、関数 f(x) を $f(x) = e^{-\frac{1}{2}(x-2)^2}$ と定義する.
 - (1) 関数 f(x) の導関数 f'(x) および第 2 次導関数 f''(x) を求めよ.
 - (2) f'(x) = 0 を満たすすべての実数 x および f''(x) = 0 を満たすすべての実数 x をそれぞれ求めよ.
 - (3) 関数 y = f(x) の区間 $-5 \le x \le 5$ における増減、極値、グラフの凹凸、変曲点を調べ、増減表を書き、グラフの概略を描け、

(4) 関数 g(x) を $g(x) = \frac{d}{dx} \int_{-x+2}^{x} (t-1)(t-3)f(t)dt$ により定義する. このとき, g(2) を求めよ.

(東北大 2008) (m20080501)

0.45 t を実数とし、2 つの関数 x=x(t)、y=y(t) により与えられる xy 平面上の点 P(x(t),y(t)) を考える。x(t) および y(t) が以下の連立微分方程式

$$\begin{cases} \frac{dx}{dt} = \alpha x - y \\ \frac{dy}{dt} = x + \alpha y \end{cases}$$

および初期条件

$$(x(0), y(0)) = (1, 1)$$

を満足するとする. ただし、 α は実数の定数である. 以下の問いに答えよ.

- (1) $\alpha = 0$ のとき、与えられた連立微分方程式の解 x(t) および y(t) を求めよ.
- (2) $\alpha \neq 0$ のとき、与えられた連立微分方程式の解 x(t) および y(t) を求めよ.
- (3) $t(t \ge 0)$ が変化するとき、点 P が描く曲線の概形を $\alpha > 0$, $\alpha = 0$, $\alpha < 0$ の場合について描け.

(東北大 2008) (m20080502)

0.46 行列 A および直交座標系の位置ベクトル p,q をそれぞれ

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 10 \end{bmatrix}, \quad \mathbf{p} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{q} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

と定義する. このとき, 以下の問いに答えよ.

- (1) A の逆行列を求めよ.
- (2) $\bf A$ の固有値および固有ベクトルを求めよ. その際、固有ベクトルの大きさは $\bf 1$ となるように求めよ.
- (3) (2) で求めた固有値を α , β , γ ($\alpha \le \beta \le \gamma$) とする. 2 次形式 $3x^2 + 2xy + 3y^2 + 10z^2$ を標準形 $\alpha u^2 + \beta v^2 + \gamma w^2$ に変換する線形変換 $\mathbf{q} = \mathbf{U}\mathbf{p}$ を与える直交行列 \mathbf{U} を求めよ.
- (4) 線形変換 $\mathbf{q} = \mathbf{U}\mathbf{p}$ により、平面 x + y + z = 1 はどのような図形に変換されるか、変換前後の図形の概形を描け、

(東北大 2008) (m20080503)

 $oldsymbol{0.47}$ 行列 $A=\left[egin{array}{cc}2&3\\3&4\end{array}
ight]$ の固有値と固有ベクトルを求めよ.

(東北大 2008) (m20080504)

0.48 3 次正方行列 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 5 & 11 \\ 2 & 3 & 6 \end{bmatrix}$ について、行列式 $\det(A)$ と逆行列 A^{-1} を求めよ.

(東北大 2008) (m20080505)

0.49 $f(x) = \sin^2 x$ を x = 0 の近くで 3 次までテーラー展開せよ.

(東北大 2008) (m20080506)

0.50 実数上の 1 階連続的微分可能関数 f(x) がすべての点 x で $\frac{df}{dx}(x)=0$ を満たすならば、f(x) は定数関数であることを示せ.

0.51 領域
$$D=\{(x,y)\mid 0\leq x\leq 1\;,\; x^2\leq y\leq 1\}$$
 で
$$\iint_D xe^{y^2}\,dxdy \qquad \text{の値を求めよ.}$$
 (東北大 2008) (m20080508)

- **0.52** 直交座標系 (x,y,z) において、点 O,A,B,C,D の座標がそれぞれ O(0,0,0),A(2,2,-4),B(3,5,-2), C(5,1,-3),D(0,0,-6) で与えられるものとする.このとき、以下の問いに答えよ.
 - (1) 線分OA, OB, OC を隣り合う3辺とする平行六面体の体積V を求めよ.
 - (2) 3 辺 A, B, C を通る平面 P の方程式を求めよ.
 - (3) (2) で求めた平面 P を接平面とし、2点 O, D を通る球の方程式を求めよ.
 - (4) 点 A を x 軸の回りに回転した後、平面 Q : $\sqrt{2}x+y+3z=2$ に直交する方向へ移動すること により、点 O に移すことを考える.この場合の x 軸回りの回転角 θ ($0 \le \theta < 2\pi$) と平面 Q に直 交する方向の移動量 L を求めよ.

0.53 x を実数とし、関数 f(x) を

$$f(x) = \sin(a\cos x)$$

と定義する. ただし、a は実数の定数である. f(x) の導関数を f'(x) とするとき、以下の問いに答えよ.

- (1) a=1 のとき f(x)=0 を満たすすべての実数 x を求めよ.
- (2) a=1 のとき f'(x)=0 を満たすすべての実数 x を求めよ.
- (3) $a = \pi$ のとき y = f(x) の区間 $0 \le x \le 2\pi$ における増減,極値を調べ、増減表を書き、グラフの概形を描け、ただし、グラフには y = 0 となる点の x の値も記すこと.

- **0.54** t, x, y を実数, A を実数の定数とし、以下の問いに答えよ.
 - (1) 置換 $t = x + \sqrt{x^2 + A}$ を用い、不定積分 $\int \frac{1}{\sqrt{x^2 + A}} dx$ を求めよ.
 - (2) 不定積分 $\int \sqrt{x^2 + A} dx$ を求めよ.
 - (3) $x \ge 0, y \ge 0$. 曲線 $\sqrt{x} + \sqrt{y} = 1$ の長さを求めよ.

- **0.55** 変数 x に関する n 次以下の実数係数多項式の全体を $P_n[x]$ とおくと, $P_n[x]$ は $\{1,x,x^2,\cdots,x^n\}$ を基底とする実ベクトル空間である.このとき,次に答えよ.
 - (1) $W = \{p(x) \in P_4[x] : p(0) = p(1) = 0\}$ の基底を求めよ.
 - (2) $D(a_3x^3 + a_2x^2 + a_1x + a_0) = 3a_3x^2 + 2a_2x + a_1$ によって定義される関数 $D: P_3[x] \to P_2[x]$ が線形写像であることを示せ.
 - (3) (2) の関数 D が全射であるか否かについて述べよ.
 - (4) (2) の関数 D が単射であるか否かについて述べよ.

(東北大 2009) (m20090504)

0.56 行列

$$A = \left[\begin{array}{rrr} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right]$$

の固有値と固有ベクトルを求めよ. さらに、Aを対角化する直交行列を求めよ.

(東北大 2009) (m20090505)

0.57 $a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{2a_n}$ で定義される数列 $\{a_n\}$ が収束することを証明し、極限値 $\lim_{n \to \infty} a_n$ を求めよ. (東北大 2009) (m20090506)

0.58 関数 $f(x)=x^{1/5}$ のテーラー展開を用い, $30^{1/5}$ の小数展開を誤差 (剰余項 R_n) <0.0001 の範囲で求めよ.

(東北大 2009) (m20090507)

0.59 領域 $D = \{(x,y) : 0 \le x + y \le 2, 0 \le x - y \le 2\}$ として、次の計算をせよ.

$$\iint_D (x-y)e^{x+y}dxdy$$

(東北大 2009) (m20090508)

0.60 x を非負の実数, r を 0 < r < 1 を満たす実数とし, 関数 f(x) を

$$f(x) = xr^x$$

と定義する.このとき,以下の問に答えよ.

- (1) f(x) の導関数 $\frac{df}{dx}$ および第 2 次導関数 $\frac{d^2f}{dx^2}$ を求めよ.
- (2) f(x) の増減表を書き、関数 y = f(x) のグラフの概形を描け.
- (3) n を正の整数とし、数列 $\{a_n\}$ の一般項を $a_n = f(n-1)$ により定義する. このとき、初項から第n 項までの和を求めよ.

(東北大 2010) (m20100501)

0.61 xy 平面上の点 P の座標が実数 t の関数として次の式で与えられる.

$$\begin{cases} x(t) = -\frac{t}{\pi} \cos t \\ y(t) = \sin t \end{cases}$$

ここで, $0 \le t \le \frac{3}{2} \pi$ の範囲で点 P の描く曲線を C とする. このとき, 以下の問に答えよ.

- (1) $t=\frac{m}{2}\pi$ (ただし m=0,1,2,3) における点 P の座標, およびそれらの点における曲線 C の接線 の傾きを求めよ. さらに, 曲線 C の概形を描け.
- (2) 不定積分 $\int t \sin^2 t \, dt$ を求めよ.
- (3) 曲線 C と x 軸 $(x \ge 0)$ および y 軸 $(y \ge 0)$ によって囲まれる領域の面積を求めよ.

(東北大 2010) (m20100502)

0.62 行列 A を次のように定義する.

$$A = \left[\begin{array}{rrr} 3 & -1 & 1 \\ -3 & 0 & 0 \\ 1 & 4 & 0 \end{array} \right]$$

このとき,以下の問に答えよ.

- (1) Aの固有値および固有ベクトルを求めよ. ただし, 固有ベクトルの大きさは任意でよい.
- (2) $A^5 13A^3$ を計算せよ.
- (3) $P^{-1}AP$ が対角行列となるような行列 P を 1 つ求めよ. また, その逆行列 P^{-1} を求めよ.
- (4) A^n を求めよ. ただし, n は自然数とする.

(東北大 2010) (m20100503)

0.63 実数 t の関数 f(t) のラプラス変換を

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

と定義する. ここで, s は Re(s) > 0 を満たす複素数である.

関数 f(t) に関する次の微分方程式を、初期条件 f(0) = f'(0) = 0 のもとで、 ラプラス変換を用いて解きたい. 以下の間に答えよ.

$$tf''(t) + (3t - 1)f'(t) + (2t - 3)f(t) = 0$$

- (1) f'(t), f''(t) のラプラス変換を, それぞれ F(s) を用いて表せ.
- (2) tf(t), tf'(t), tf''(t) のラプラス変換を, それぞれ F(s) を用いて表せ.
- (3) F(s) に関する次の微分方程式が次のように与えられることを示せ.

$$(s+1)\frac{dF(s)}{ds} + 3F(s) = 0$$

(4) F(s) に関する次の微分方程式を解いて, f(t) を求めよ.

(東北大 2010) (m20100504)

- **0.64** xyz 空間に、点 P(0,0,5) を通る直線 ℓ と、点 Q(0,4,2) を中心とする半径 r (ただし r>0) の球面 S がある. このとき、以下の問いに答えよ.
 - (1) 球面 S と接する直線 ℓ が存在するための r の範囲を求めよ.
 - (2) r=1 とし、点 P に点光源を置いたとき、xy 平面上にできる球面 S の影を領域 R とする、領域 R を表す不等式を求めよ.
 - (3) 領域 R の面積を求めよ.

(東北大 2011) (m20110501)

0.65 x を実数とし、関数 f(x) を

$$f(x) = e^{-x} \cos x$$

と定義する. このとき, 以下の問いに答えよ.

(1) 関数 f(x) の第 n 次導関数を $\frac{d^n f}{dx^n}$ とするとき,

$$\frac{d^n f}{dx^n} = \left(-\sqrt{2}\right)^n e^{-x} \cos\left(x - \frac{n\pi}{4}\right)$$

であることを数学的帰納法を用いて証明せよ.

- (2) 関数 y=f(x) の区間 $0 \le x \le 2\pi$ における増減、極値、グラフの凹凸、変曲点を調べ、増減表を書き、グラフの概略を描け、
- (3) 曲線 y=f(x) (区間 $0 \le x \le \frac{\pi}{2}$) と x 軸および y 軸で囲まれた図形を, x 軸のまわりに 1 回転してできる回転体の体積 V を求めよ.

0.66 \mathbb{R}^3 を実数を成分とする 3 次元ベクトルよりなる実ベクトル空間、

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 1 \end{array}\right)$$

とする.

(1) Aの固有値と固有ベクトルをすべて求めよ.

 $(2)\quad v\in\mathbb{R}^3\; \text{に対し},\; \left(\frac{1}{2}A\right)^n v\; (n=1,2,3,\cdots)\; \text{が}\; n\longrightarrow\infty\; \text{で収束するとき,}\; その極限を$

$$\lim_{n\to\infty} \left(\frac{1}{2}A\right)^n v = \left(\begin{array}{c} x_\infty \\ y_\infty \\ z_\infty \end{array}\right)$$

とあらわす. この極限が存在し0でないとき、成分の比 $x_{\infty}: y_{\infty}: z_{\infty}$ を求めよ.

(東北大 2011) (m20110503)

0.67
$$\mathbb{R}^4$$
 における4つのベクトル $\boldsymbol{a} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ \boldsymbol{c} = \begin{pmatrix} 4 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \ \boldsymbol{d} = \begin{pmatrix} 2 \\ 3 \\ 3 \\ -1 \end{pmatrix}$ について、以下の問いに答えよ。

(1) $\{a,b,c,d\}$ は \mathbb{R}^4 の基底となることを示せ.

(2) ベクトル
$$\mathbf{g} = \begin{pmatrix} -1 \\ 2 \\ 3 \\ 0 \end{pmatrix}$$
 を基底 $\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$ の一次結合で表せ.

(東北大 2011) (m20110504)

0.68 $n \ge 5$ とし、n 次以下の実多項式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ のなす線形空間を W とし

$$V = \{ f(x) \in W \mid f'(1) = f''(1) = 0 \}$$

とおく (VはWの部分空間である). Vの基底および次元を求めよ.

(東北大 2011) (m20110505)

0.69 無限級数

$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$

が収束するかどうか判定せよ.

(東北大 2011) (m20110506)

0.70 重積分

$$I = \int_0^\infty \int_0^\infty x^2 e^{-x^2 - y^2} \, dx dy$$

の値を求めよ.

(東北大 2011) (m20110507)

- **0.71** 数列 $\{a_n\}$ $(n = 1, 2, 3, \cdots)$ について、以下の問いに答えよ.
 - (1) $a_{n+2}+pa_{n+1}+qa_n=0$ とする. このとき. $b_n=a_{n+1}-\alpha a_n$ によって定められる数列 $\{b_n\}$ が 公比 β の等比数列となるような α と β をすべて求めよ.
 - (2) $(n+2)a_{n+2}-2(n+1)a_{n+1}\cos\theta+na_n=0$ であるとき、 a_1 と a_2 を用いて a_n $(n \ge 3)$ を表せ、ただし、 $0<\theta<\frac{\pi}{2}$ とする.
 - (3) $a_1 = 1$, $a_2 = i$ (ただし $i = \sqrt{-1}$) とし、複素平面上で原点を O、複素数 a_n を表す点を A_n とする. a_n が (2) の式で表されるとき、三角形 OA_nA_{n+1} ($n \ge 3$) の面積を求めよ.

(東北大 2012) (m20120501)

 $oldsymbol{0.72}$ 3次の対称行列 $oldsymbol{A}$ および 3次元ベクトル $oldsymbol{m}=\left[egin{array}{c} x \\ y \\ z \end{array}
ight]$ を用いて表される 2次形式

$$f(\mathbf{m}) = {}^{t}\mathbf{m}\mathbf{A}\mathbf{m} = 5x^{2} + 2y^{2} + 5z^{2} + 4xy + 4yz + 8xz$$

を考える. ここで、左上付き添字tは転置を表す. このとき、以下の問に答えよ.

- (1) Aを求めよ.
- (2) (1) で求めた A の固有値を求めよ. また, 各固有値の重複度を答えよ.
- (3) $P^{-1}AP$ が対角行列となるような直交行列 P を 1 つ求めよ. また、この P を用いて A を対角化せよ.
- (4) 3次元ベクトル $m{n}=\begin{bmatrix}u\\v\\w\end{bmatrix}$ を考える. (3) で求めた $m{P}$ を用いて変数変換 $m{m}=m{Pn}$ を行い、 $f(m{m})$ の標準形を求めよ.

(東北大 2012) (m20120502)

- **0.73** 点 P(0,-1) を通る直線と曲線 $C: y = -x^2 + 2x$ が 2 点 Q,R で交わるとき,以下の問いに答えよ. ただし,点 Q の x 座標を a として,0 < a < 2 とする.
 - (1) 点 Q, R それぞれにおける曲線 C の接線 ℓ_Q , ℓ_R の方程式を求めよ.
 - (2) (1) で求めた接線 ℓ_Q , ℓ_R の交点の軌跡を求めよ.
 - (3) (2) の交点が第 1 象限にあるとき,y 軸,曲線 C,接線 ℓ_Q および (2) で求めた軌跡で囲まれた領域を図示し,この図形を x 軸の周りに 1 回転してできる立体の体積を求める積分の式を示せ.

(東北大 2012) (m20120503)

 $\mathbf{0.74}$ 実数 t の関数 f(t) のラプラス変換を

$$F(s) = \int_0^\infty e^{-st} f(t)dt$$

と定義する. ここで, s は Re(s) > 1 を満たす複素数である.

以下の問いに答えよ. ただし、関数 f(t) は f(0) = 0 を満たすとする.

- (1) f'(t), $e^{-t}f'(t)$ のラプラス変換を、それぞれ s, F(s) を用いて表せ.
- (2) $\int_{0}^{t} e^{-\tau} f'(\tau) d\tau$, $e^{t} \int_{0}^{t} e^{-\tau} f'(\tau) d\tau$ のラプラス変換を, それぞれ s, F(s) を用いて表せ.

(3) 次の微分積分方程式

$$f'(t) + e^t \int_0^t e^{-\tau} f'(\tau) d\tau = e^t$$

をラプラス変換により, sと F(s) を用いて表せ.

(4) (3) の微分積分方程式の解 f(t) を求めよ.

(東北大 2012) (m20120504)

 ${m 0.75}$ ${m R}$ は実数全体のなす集合を表す. ${m R}^N$ は N 次元実ベクトル全体のなす集合を表す.

$$m{R}^4$$
 の 3 つのベクトルを $m{a}=\begin{pmatrix} 1\\-2\\1\\4 \end{pmatrix},\;m{b}=\begin{pmatrix} 3\\1\\2\\0 \end{pmatrix},\;m{c}=\begin{pmatrix} 4\\-1\\3\\2 \end{pmatrix}$ で定め、これらを列にもつ行列

$$A = (\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}) = \begin{pmatrix} 1 & 3 & 4 \\ -2 & 1 & -1 \\ 1 & 2 & 3 \\ 4 & 0 & 2 \end{pmatrix}$$

を考える. 以下の問に答えよ.

- (1) a, b, c が一次独立であることを示せ.
- (2) A によって定まる線形写像の像をIm(A) とする. つまり

$$\operatorname{Im}(A) = \left\{ A \left(egin{array}{c} lpha \ eta \end{array}
ight) \left| \ lpha, eta, \gamma \in oldsymbol{R}
ight\}$$
である. $oldsymbol{R}^4$ のベクトル $\left(egin{array}{c} p \ q \ r \ s \end{array}
ight)$ が $\operatorname{Im}(A)$ の元であると

き、 $p \in q, r, s$ で表せ.

$$(3) \quad \boldsymbol{x} = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}, \quad \boldsymbol{x'} = \begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} \in \boldsymbol{R}^4 \text{ の内積を}$$

$$(\boldsymbol{x}, \boldsymbol{x}') = xx' + yy' + zz' + ww'$$

とする.

 $m{x} \in m{R}^4$ が $(m{x}, m{a}) = (m{x}, m{b}) = (m{x}, m{c}) = 0$ をみたし、4 次行列 $\tilde{A} = (m{a}, m{b}, m{c}, m{x})$ の行列式が 1 であるとき $m{x}$ を求めよ、

(東北大 2012) (m20120505)

- **0.76** R は実数全体のなす集合を表す. R^N は N 次元実ベクトル全体のなす集合を表す. 以下の問いに答えよ.
 - (1) \mathbf{R}^N のベクトル v_1, \dots, v_m が一次従属であるとする.このときある v_i は v_j (ただし, $j \neq i$) の一次結合であることを示せ.
 - (2) V,W は \mathbb{R}^N の部分空間で $V \subset W$ をみたすとする. V の任意の基底 $\{v_1,\cdots,v_n\}$ に対し、それをふくむ W の基底が存在することを示せ.

(東北大 2012) (m20120506)

0.77 実変数 x, y の関数 $f(x, y) = x^3 - y^2$ について以下の問に答えよ.

- (1) (x,y) が実平面全体をうごくとき,f(x,y) の臨界点 $\left(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0\right)$ となる点 をすべて求めよ.
- (2) 各臨界点について、それが f の極値を与えるか調べよ.
- (3) 点 (x,y) が円 $x^2+y^2=1$ の上をうごくとき、関数 f(x,y) の最大、最小とそのときの x,y の値を求めよ、

(東北大 2012) (m20120507)

0.78 数列

$$a_n = \frac{-n^2 + 3n - 1}{n^2 + 1}$$
 (ただし $n = 1, 2, \cdots$)

について、その最大値、最小値および $\lim_{n\to\infty} a_n$ を求めよ.

(東北大 2012) (m20120508)

- **0.79** z を正の実数とする.実変数の関数 f(x) に対し,広義積分 $\int_0^\infty e^{-xz} f(x) dx$ が存在するとき,これを I[f](z) と書くことにする.
 - (1) f が区間 $[0,\infty)$ で連続かつ有界であれば、I[f](z) が存在することを示せ.
 - (2) a を実数とする. $I[\sin ax](z)$, $I[\cos ax](z)$ をそれぞれ求めよ.

(東北大 2012) (m20120509)

0.80 x を正の実数とし、関数 f(x) を次のように自然対数を用いて定義する.

$$f(x) = \frac{\log x}{x^2}$$

このとき、以下の問に答えよ.

- (1) f(x) の導関数 $\frac{df}{dx}$ および第 2 次導関数 $\frac{d^2f}{dx^2}$ を求めよ.
- (2) f(x) の増減表を書き、関数 y = f(x) のグラフの概形を描け.
- (3) y = f(x), y = 0, x = b のそれぞれによって囲まれた図形の面積 S を求めよ. ただし,b は b > 1 を満たす実数とする.

(東北大 2013) (m20130501)

0.81 xy 平面上の点 P の座標が実数 t の関数として次の式で与えられる.

$$\begin{cases} x(t) = \sin t \\ y(t) = \sin 2t \end{cases}$$

ここで、 $0 \le t \le \frac{\pi}{2}$ の範囲で点 P の描く曲線を C とする.

このとき、以下の問に答えよ.

- (1) $t = \frac{\pi}{3}$ における点 P の座標,およびその点における曲線 C の接線の傾きを求めよ.
- (2) 曲線 C と x 軸によって囲まれる領域の面積 S を求めよ.
- (3) 曲線Cがx軸のまわりに1回転してできる回転体の体積Vを求めよ.

(東北大 2013) (m20130502)

0.82 行列 A と行列 B を次のように定義する.

$$A = \begin{pmatrix} 3 & -2 & 2 \\ 1 & 0 & 2 \\ 1 & -2 & 4 \end{pmatrix} , \quad B = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 5 & 4 \\ 2 & 1 & 2 \end{pmatrix}$$

このとき、以下の間に答えよ.

- (1) AB を求めよ.
- (2) 行列式 |A| を求めよ.
- (3) 逆行列 A-1 を求めよ.
- (4) Aの固有値を求めよ.

(東北大 2013) (m20130503)

0.83 関数 f(x) を、以下のように定義する.

$$f(x) = \frac{-ax^2 - (a-1)}{x^2 + 1} \qquad (a \neq 0)$$

以下の問いに答えよ. ただし, y = f(x) は x 軸と 2 つの交点 A および B をもつものとする.

- (1) y = f(x) が x 軸と 2 つの交点をもつ a の条件を示し、交点 A, B の x 座標 x_A , x_B (ただし $x_A > x_B$) 求めよ.
- (2) y = f(x) の増減表を示し、y = f(x) のグラフの概形を描け.
- (3) 交点 A, B における接線の方程式を求め、その接線2本の交点の座標を求めよ.
- (4) y = f(x) と x 軸上の線分 AB により囲まれる領域の面積 S_1 と、(3) で求めた 2 本の接線と x 軸上の線分 AB により囲まれる領域の面積 S_2 を求め、 S_1 と S_2 の大小関係を示せ.

(東北大 2014) (m20140501)

0.84 3次の対称行列 A および 3次元ベクトル u を、次のように定義する.

$$A = \begin{bmatrix} 9 & -3 & 0 \\ -3 & 12 & -3 \\ 0 & -3 & 9 \end{bmatrix} , \quad \mathbf{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

以下の問いに答えよ.

- (1) Aの固有値および固有ベクトルをすべて求めよ.
- (2) $f(x,y,z) = {}^t u A u$ と定める (ここで、左上付き添字 t は転置を表す). f(x,y,z) を x,y および z の多項式で表せ.
- (3) 原点を通り A の固有ベクトルに平行な直線と、2次曲面 f(x,y,z)=18 との交点をすべて求めよ.

(東北大 2014) (m20140502)

- 0.85 以下の問いに答えよ.
 - (1) 次の条件を満たす数列 $\{a_n\}$ を求めよ.

$$a_1 = 3,$$
 $a_2 = 7,$ $a_{n+2} = a_{n+1} + 2a_n$ $(n = 1, 2, 3 \cdots)$

(2) 次の条件を満たす数列 $\{b_n\}$ の極限を求めよ.

$$b_1 = 0,$$
 $b_{n+1} = \sqrt{b_n + 2}$ $(n = 1, 2, 3 \cdots)$

(3) 次の条件を満たす c_2 , c_3 および c_4 を求め、数列 $\{c_n\}$ を推定せよ. また、その推定が正しいことを、数学的帰納法によって証明せよ.

$$c_1=2, \qquad c_{n+1}=\frac{c_n}{1+c_n} \qquad \qquad (n=1,2,3\cdots)$$
 (東北大 2014) (m20140503)

- **0.86** $e^{ix} = \cos x + i \sin x$ の関係を用いて、以下の関係が成り立つことを示せ、ただし、 $i = \sqrt{-1}$ である.
 - (1) $\sin 2\theta = 2\sin \theta \sin \theta$
 - (2) $\cos 2\theta = 1 2\sin^2 \theta$

(東北大 2015) (m20150501)

 $\mathbf{0.87}$ $\frac{2x}{\pi} \le \sin x \le x$ $\left(0 \le x \le \frac{\pi}{2}\right)$ が成り立つことを示せ.

(東北大 2015) (m20150502)

- **0.88** $x = a\cos^3 t, \ y = a\sin^3 t \ (0 \le t \le 2\pi)$ で表される xy 平面上の曲線について、以下の問に答えよ、ただし、a は正の実数とする.
 - (1) $\frac{dy}{dx}$ を t の関数として示せ.
 - (2) この曲線の概形を描き、曲線の全長を求めよ.
 - (3) この曲線が囲む面積を求めよ.

(東北大 2015) (m20150503)

- **0.89** xyz 空間の曲面 $f(x,y,z)=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}-1=0$ について、以下の問に答えよ. ただし、a,b,c は 正の実数とする.
 - (1) 曲面 f(x, y, z) = 0 が囲む体積 V を求めよ.
 - (2) 点 P(1,2,3) が曲面 f(x,y,z) = 0 上の点となるとき, a,b,c が満たす式を求めよ.
 - (3) 曲面 f(x,y,z) = 0 上の点 P(1,2,3) における接平面 π_P および法線 n_P の式を求めよ.
 - (4) (2) の条件下で、(1) の体積 V が最小となる a,b,c の値を求めよ.

(東北大 2015) (m20150504)

0.90 x を実数とする. $n \times n$ 正方行列である $A_n(x)$ と B_n を以下のように与える.

$$\mathbf{A}_{n}(x) = \begin{pmatrix} -x & 1 & 0 & \dots & 0 \\ 1 & -x & 1 & \ddots & \vdots \\ 0 & 1 & -x & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 1 & -x \end{pmatrix} \qquad \mathbf{B}_{n} = \mathbf{A}_{n}(0) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \ddots & \vdots \\ 0 & 1 & 0 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$

すなわち、 $A_n(x)$ は対角要素がすべて -x、その両側の斜めの要素が 1、それ以外の要素がすべて 0 の 3 重対角行列である. B_n は $A_n(x)$ において x=0 としたときの行列である.

- (1) B_2 の固有値をすべて求めよ.
- (2) B_3 の固有値をすべて求めよ.
- (3) B_n の固有値のひとつを λ とする. この λ は $|A_n(\lambda)| = 0$ を満たすことを示せ.
- (4) λ が \boldsymbol{B}_n の固有値であるとき、 $|\boldsymbol{A}_n(\lambda)|$ は漸化式 $|\boldsymbol{A}_n(\lambda)| = -\lambda |\boldsymbol{A}_{n-1}(\lambda)| |\boldsymbol{A}_{n-2}(\lambda)|$ を満たすことを示せ、ただし、 $|\boldsymbol{A}_0(\lambda)| = 1$ 、 $|\boldsymbol{A}_1(\lambda)| = -\lambda$ とする.
- (5) $\lambda = -2\cos\theta$, $|\mathbf{A}_n(\lambda)| = \frac{\sin[\;(n+1)\theta\;]}{\sin\theta}$ とおくとき、これらが (4) の漸化式を満たすことを示せ、ただし、 $\sin\theta \neq 0$ である.

(6) $\frac{\sin[\;(n+1)\theta\;]}{\sin\theta}=0$ を満たす θ を求めよ. これを使って, \boldsymbol{B}_n の固有値 $\lambda=-2\cos\theta$ を求めよ. また,求めた固有値は, $n=2,\;n=3$ の場合,それぞれ (1) および (2) で求めた固有値と一致することを示せ.

(東北大 2015) (m20150505)

- **0.91** 3 次実対称行列 $A = \begin{pmatrix} -2 & -1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2 \end{pmatrix}$ に対して、以下の問いに答えよ.
 - (1) A のすべての固有値を求めよ.
 - (2) (1) で求めた固有値のそれぞれに対して、固有空間の次元を求めよ.
 - (3) 3 次直交行列 P で, ${}^t\!PAP$ が対角行列となるものを一つ求めよ. ただし, ${}^t\!P$ で P の転置行列を表す.

(東北大 2015) (m20150506)

0.92 a は負, b は正の定数とする. 3 次実正方行列 A を

$$A = \left(\begin{array}{ccc} 1 & -2 & 4\\ 1 & a & a^2\\ 1 & b & b^2 \end{array}\right)$$

と定める. 以下の問いに答えよ.

- (1) 行列 A の階数が 2 であるための必要十分条件を求めよ.
- (2) A が正則行列のとき、A の逆行列 A^{-1} を求めよ。

(東北大 2015) (m20150507)

- **0.93** $a_n \ge 0$ $(n = 1, 2, 3, \cdots)$ とするとき,以下の問いに答えよ.
 - (1) 級数 $\sum_{n=1}^{\infty} a_n$ が収束するならば,級数 $\sum_{n=1}^{\infty} a_n^2$ も収束することを示せ. また,逆が成り立たないことを示す例を一つあげよ(証明不要).
 - (2) 級数 $\sum_{n=1}^{\infty} a_n$ が収束し, $a_n \neq 1$ $(n=1,2,3,\cdots)$ であるとする.このとき,級数 $\sum_{n=1}^{\infty} \frac{a_n}{1-a_n}$ は収束することを示せ.
 - (3) 級数 $\sum_{n=1}^{\infty} a_n$ が収束するならば、級数 $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ も収束することを示せ.

(東北大 2015) (m20150508)

- $\textbf{0.94} \quad 関数 \ f: \mathbb{R} \to \mathbb{R} \ & \ \ f(x) = \left\{ \begin{array}{ccc} x^4 \sin \frac{1}{x} & (x \neq 0 \ \mathcal{O} \ \mathcal{E}^{\mbox{\scriptsize 2}}) \\ 0 & (x = 0 \ \mathcal{O} \ \mathcal{E}^{\mbox{\scriptsize 3}}) \end{array} \right. \ \, \text{と定める}.$
 - (1) f は x = 0 で連続であることを証明せよ.
 - (2) f は x=0 で何回微分可能か.

(東北大 2015) (m20150509)

0.95 (x,y) 座標平面において、4 本の直線

$$y = x$$
, $y = x - 1$, $y = -x + 1$, $y = -x + 3$

で囲まれた閉領域 D を考える. このとき, 重積分

$$\iint_D \frac{x-y}{x+y} \, dx \, dy$$

を、変数変換 u = x + y, v = x - y を用いて求めよ.

- **0.96** a,b,c を正の実数とするとき、以下の問いに答えよ. ただし、 $a \neq 1$ 、 $c \neq 1$ とする.
 - $(1) \ \log_a b = \frac{\log_c b}{\log_c a} \ \text{が成り立つことを示せ}.$
 - (2) 方程式 $\log_a x = 2x$ の実数解が 1 つだけになるための a の条件を求めよ.

- **0.97** 領域 $D = \left\{ (x,y) \mid x^2 + y^2 \le 1, \sqrt{2}x^2 \le y \right\}$ について、以下の問いに答えよ.
 - (1) 領域 D の面積 S を求めよ.
 - (2) 領域 D の重心の座標を求めよ. ここで、領域 D の重心の座標 $(\overline{x}, \overline{y})$ は以下の式で表される.

$$(\overline{x},\ \overline{y}) = \left(rac{1}{S}\iint_{D}xdxdy\,,\ rac{1}{S}\iint_{D}ydxdy
ight) \hspace{0.5cm} S:$$
 領域 D の面積

(東北大 2016) (m20160502)

0.98 (1) 次の条件を満たす数列 $\{a_n\}$ を求めよ. ただし, $S_n = \sum_{k=1}^n a_k$ とする.

$$a_1 = 1$$
, $a_{n+1} = -a_n + S_n$ $(n = 1, 2, 3, \cdots)$

(2) 次の数列が収束するとき、実数 x の範囲と数列の極限を求めよ.

$$\frac{(2x-1)^n}{3^n} \quad (n=1,2,3,\cdots)$$

(3) ロピタルの定理を用いて、以下の極限を求めよ.

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right) \frac{1}{1 - \cos x}$$

(東北大 2016) (m20160503)

0.99 次の対称行列 A およびベクトル r について以下の問に答えよ.

$$m{A} = \left[egin{array}{cc} 6 & -2 \ -2 & 6 \end{array}
ight], \quad m{r} = \left[egin{array}{c} 2\sqrt{3} \ 2 \end{array}
ight]$$

- (1) 行列 \boldsymbol{A} の固有値および固有ベクトルをすべて求めよ. ただし、固有ベクトルの大きさを 1 と \mathbf{A} と
- (2) ベクトルr を回転行列R によって角度 θ 回転させたものをベクトルs とする。 $\theta=30$ とした場合の回転行列R とベクトルs を求めよ。ただし、 θ は反時計回りを正とする。

(3) 基本ベクトル $e_1 = [1,0]^t$, $e_2 = [0,1]^t$ を行列 R によってそれぞれ原点に対して反時計回りに角度 $\theta = 30$ 回転させたベクトルを e_1' , e_2' とする. (2) で求めたベクトル s を $(e_1' e_2')$ 座標系により表記したベクトル s' を求めよ. さらに s' = Qs となる変換行列 Q を求めよ.

(東北大 2016) (m20160504)

- **0.100** V を実ベクトル空間とするとき、以下の問いに答えよ.
 - (1) n 個の元 \mathbf{a}_1 , \mathbf{a}_2 , \cdots , $\mathbf{a}_n \in V$ の中に同じものがあれば, \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n は一次従属であることを示せ.
 - (2) n 個の元の組 $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n \in V$ は一次独立とし、 $C = (c_{ij})_{ij}$ を n 次実正方行列、 $\mathbf{a}_i = \sum_{j=1}^n c_{ij} \mathbf{b}_j \ (i=1,2,\cdots,n)$ とおく、 $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ が一次独立であることの必要十分条件 は C が正則行列であることを示せ、

(東北大 2016) (m20160505)

- 0.101 (1) 実正方行列が直交行列であることの定義を述べよ.
 - (2) 2次の直交行列は

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad または \qquad \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \qquad (\theta: 実数)$$

の形であることを示せ.

(3) A を n 次直交行列とする。 2 つのベクトル v, $w \in \mathbb{R}^n$ に対して, Av と Aw の間の距離は,v と w の間の距離に等しいことを示せ. ただし,距離はユークリット空間における標準的な距離とする.

(東北大 2016) (m20160506)

- **0.102** (1) $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4, \ x \ge 0\}$ に対して重積分 $\iint_D xy^2 dx dy$ の値を求めよ.
 - (2) $V = \{(x,y,z) \in \mathbb{R}^3 \mid 0 \le y \le x \le 1, \ 0 \le z \le x^2 + y^2 + 1\}$ の体積を求めよ.

(東北大 2016) (m20160507)

- **0.103** 実数列 $\{a_n\}_{n=1}^{\infty}$ に対して、以下の問いに答えよ.
 - (1) 級数 $\sum_{n=1}^{\infty} a_n$ が収束するとき、 $\{a_n\}_{n=1}^{\infty}$ は 0 に収束することを示せ.
 - (2) 級数 $\sum_{n=1}^{\infty} a_n$ が収束するとき, $\left\{a_n\right\}_{n=1}^{\infty}$ のある部分列 $\left\{a_{n(k)}\right\}_{k=1}^{\infty}$ が存在して, $a_{n(k)} < \frac{1}{n(k)}$ が成り立つことを示せ.
 - (3) (2) において、「 $a_{n(k)} < \frac{1}{n(k)}$ 」を「 $\left|a_{n(k)}\right| < \frac{1}{n(k)}$ 」と置き換えても主張は成り立つか、もし成り立つならばそれを証明し、成り立たない場合は反例をあげよ.

(東北大 2016) (m20160508)

- **0.104** 関数 $f: \mathbb{R} \to \mathbb{R}$ が以下の条件 (i),(ii) を満たすとする.
 - (i) f(0) = 0 (ii) $|x y| \le 1$ ならば $|f(x) f(y)| \le 1$ が成り立つ.

以下の問いに答えよ.

 $(1) \ \left| f(1) \right| \leq 1 \ を示せ. \\ (2) \ \left| f(1.5) \right| \leq 2 \ を示せ.$

(3) すべての $x \in \mathbb{R}$ に対して $|f(x)| \le |x| + 1$ が成り立つことを示せ.

(東北大 2016) (m20160509)

0.105 実数 x を含む次の行列 A について以下の問いに答えよ.

$$\mathbf{A} = \begin{pmatrix} x & -x - 1 & 0 \\ x - 1 & -x & 0 \\ 1 - x & x + 1 & 1 \end{pmatrix}$$

- (1) 行列 A の固有値をすべて求めよ.
- (2) A^2 と逆行列 A^{-1} を求めよ.
- (3) 行列 \mathbf{B} を次式で定義する. n が 3 以上の整数であるとき, \mathbf{B} を n と x を用いて表せ.

$$B = A^n + nA^{n-1} - A^{n-2}$$
 $(n = 3, 4, 5, \cdots)$

(東北大 2017) (m20170501)

- **0.106** xyz 空間の曲面 $S: (x+2)^2 + (y+1)^2 = 4z$ および平面 P: z = a(x+y+2) について、以下の間に答えよ、ただし、a は正の実数とする.
 - (1) 平面 y = -1 と曲面 S の交線の方程式を求め、図示せよ、
 - (2) 曲面 \mathbf{S} と平面 \mathbf{P} の交線 \mathbf{C} を考える. a=1 のとき, \mathbf{C} を xy 平面に投影した曲線の方程式を求めよ.
 - (3) 曲面 S と平面 P が一点で接するときの a の値と接点の座標を求めよ.
 - (4) a=1 のとき、曲面 S と平面 P が囲む領域の体積を求めよ.

(東北大 2017) (m20170502)

0.107 (1) 次の条件を満たす数列 $\{a_n\}$ の一般項を求めよ.

$$a_1 = 1,$$
 $a_2 = 3,$ $a_{n+2} - 3a_{n+1} + 2a_n = 0$ $(n = 1, 2, 3, \dots)$

(2) 次の条件を満たす数列 $\{b_n\}$ について、以下の間に答えよ.

$$b_{n+2} = |b_{n+1} - b_n|$$
 $(n = 1, 2, 3, \dots)$

ただし、 b_1 と b_2 は正の整数とする.

- (a) $b_1 = 21$, $b_2 = 27$ のとき, b_3 , b_4 , b_5 , b_6 を求めよ.
- (b) b_1 と b_2 が正の整数 d の倍数であるとき, b_n も d の倍数であることを数学帰納法により証明 せよ.
- (3) 次の条件を満たす数列 $\{c_n\}$ について、以下の問に答えよ.

$$-1 < c_1 < 0,$$
 $c_{n+1} = \frac{2}{1 - c_n} - 2$ $(n = 1, 2, 3, \dots)$

- (a) $c_1 = -1/2$ のとき、 c_2 を求めよ.
- (b) $-1 < c_n < 0$ となることを数学帰納法により証明せよ.
- (c) 数列 $\{c_n\}$ が単調減少列となることを示し、さらに数列 $\{c_n\}$ の $n \to \infty$ の極限を求めよ.

(東北大 2017) (m20170503)

0.108 3 次実正方行列 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 0 \end{pmatrix}$ に対して、以下の問いに答えよ.

- (1) Aの固有値と各固有値に対する固有ベクトルを求めよ.
- (2) x,y,zの連立方程式

$$A \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right)$$

は解を持つか、その理由も答えよ.

(東北大 2017) (m20170504)

0.109 実数を成分とする 4 次元列ベクトル全体のなす実ベクトル空間を \mathbb{R}^4 で表す. \mathbb{R}^4 のベクトル

$$a_{1} = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 2 \end{pmatrix}, \quad a_{2} = \begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \quad a_{3} = \begin{pmatrix} 3 \\ 4 \\ -2 \\ 0 \end{pmatrix}, \quad a_{4} = \begin{pmatrix} 4 \\ 2 \\ 5 \\ 5 \end{pmatrix}$$

を考える. a_1 と a_2 が生成する部分空間を W_1 とし、 a_3 と a_4 が生成する部分空間を W_2 とする. 以下の問いに答えよ.

- (1) W_1 および W_2 の次元を求めよ.
- (2) $W_1 \cap W_2$ の次元を求めよ.
- (3) $W_1 \cap W_2$ の基底を求めよ.

(東北大 2017) (m20170505)

0.110 \mathbb{R}^2 上で定義された 2 変数関数

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

について、以下の問いに答えよ.

- (1) f(x,y) は (x,y) = (0,0) で連続であることを示せ.
- (2) $D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x^2 + y^2 \le 3$ かつ $y \ge 0\}$ とするとき,積分 $\int_D f(x,y) dx dy$ の値を求めよ.

(東北大 2017) (m20170506)

0.111 $0 \le t < 1$ とする. 各 t について、次の関数の極大値をとる点と極小値をとる点を求めよ. 極値を求める必要はないが、極大か極小であるかは明記すること.

$$f(x,y) = (x^2 + y^2 - 1)(x - t)$$
 $((x,y) \in \mathbb{R}^2)$

(東北大 2017) (m20170507)

0.112 (1) 0 以上の整数 n に対して,

$$\int_{0}^{1} \frac{1 - (-1)^{n+1} x^{2(n+1)}}{1 + x^{2}} dx = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + (-1)^{n} \frac{1}{2n+1}$$

を示せ

(2) 無限級数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ が収束することを示し、その極限を求めよ.

(東北大 2017) (m20170508)

0.113 オイラーの公式 $e^{i\theta}=\cos\theta+i\sin\theta$ を用いて、次の関係が成り立つことを示せ、 ただし、 $i=\sqrt{-1}$ である.

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

(東北大 2018) (m20180501)

0.114 関数 f(x) を、以下のように定義する、次の問いに答えよ、

$$f(x) = e^{2x}(\cos^2 x - \sin^2 x) \quad (0 \le x \le \pi)$$

- (1) f(x) = 0 となる x を求めよ.
- (2) 関数 f(x) の極値を求めよ. また、この関数の増減表を示せ.
- (3) k を実数とする. f(x) = k の実数解の個数を求めよ.

(東北大 2018) (m20180502)

0.115 xyz 空間における点 P の座標が実数 t の関数として次の式で与えられる.

$$\begin{cases} x(t) = a \cos t \\ y(t) = \sin t \\ z(t) = -a \sin t \end{cases}$$

ここで、a は正の実数である。 $0 \le t \le 2\pi$ の範囲で点 P の描く曲線を C とする。以下の問に答えよ。

- (1) $t = \frac{\pi}{2}$ と $t = \pi$ のそれぞれに対し、点 P の座標とその点における曲線 C の接線方向を表すベクトルを求めよ.
- (2) 曲線 C 上の任意の点 P における接線の方程式を求めよ.
- (3) 曲線 C が平面上の曲線であることを示し、その平面の方程式と単位法線ベクトルを求めよ.
- (4) 曲線 C が xz 平面に投影した曲線で囲まれる領域 D の面積を求めよ.

(東北大 2018) (m20180503)

0.116 次の行列 A の逆行列 A^{-1} を求めよ.

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & 0 & 1 \\ 7 & 2 & 9 \\ 6 & 1 & 5 \end{array} \right)$$

(東北大 2018) (m20180504)

0.117 次の行列 **B** の行列式 |**B**| を求めよ.

$$\boldsymbol{B} = \begin{pmatrix} 3 & 9 & -4 & -8 \\ 5 & -7 & -6 & 9 \\ 0 & -2 & 0 & 3 \\ 0 & -1 & 0 & 2 \end{pmatrix}$$

(東北大 2018) (m20180505)

0.118 次の行列 C について、以下の問に答えよ.

$$C = \left(\begin{array}{cc} 11 & -2 \\ -2 & 14 \end{array}\right)$$

- (1) 行列 C の固有値および固有ベクトルをすべて求めよ. ただし、固有ベクトルの大きさを 1 とする.
- (2) P^tCP が対角行列となるような直交行列 P を求め、 P^tCP を計算せよ. ただし、 P^t は行列 P の転置行列を表す.

(東北大 2018) (m20180506)

- **0.119** 標準的内積をもつ 6 次元実ベクトル空間 \mathbb{R}^6 の標準基底を $\{e_1, \cdots, e_6\}$ とし、 $v_1=e_1+e_2+e_3+e_5$ 、 $v_2=e_2+e_4+e_6$ とおく.
 - (1) ベクトル v_1 と v_2 に直交する \mathbb{R}^6 のベクトル全体を W とおくとき,W は部分ベクトル空間であることを示せ.
 - (2) W の基底を1つ与えて、それが基底であることを示せ、
 - (3) W の直交補空間 W[⊥] の正規直交基底を求めよ.

(東北大 2018) (m20180507)

0.120 (1) n 次正方行列 A, B を用いて 2n 次正方行列 C を

$$C = \left(\begin{array}{cc} A & B \\ B & A \end{array}\right)$$

で定めるとき, 等式

$$\det C = \det(A+B) \times \det(A-B)$$

が成り立つことを示せ、ただし、 $\det C$ は C の行列式を表す、

(2) 4次正方行列

$$D = \left(\begin{array}{cccc} 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{array}\right)$$

のすべての固有値を求め、それぞれの固有値に対応する固有空間の基底を求めよ.

(東北大 2018) (m20180508)

- **0.121** $\{a_n\}_{n=1}^{\infty}$ を実数列とするとき,以下の問いに答えよ.
 - (1) 級数 $\sum_{n=1}^{\infty} a_n$ が収束するならば、 $\lim_{n\to\infty} a_n = 0$ であることを示せ.
 - (2) 任意の n に対し $a_n \ge 0$ であるとする. 級数 $\sum_{n=1}^{\infty} a_n$ が発散するならば、級数

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + a_n}$$

も発散することを示せ.

(東北大 2018) (m20180509)

0.122 \mathbb{R}^2 上の 2 変数関数 f(x,y) を

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{\sqrt{x^2 + y^2}} & ((x,y) \neq (0,0)) \text{ のとき} \\ 0 & ((x,y) = (0,0)) \text{ のとき} \end{cases}$$

と定める. 以下の問いに答えよ.

- (1) f(x,y) は (x,y) = (0,0) において連続であることを示せ.
- (2) f(x,y) は (x,y)=(0,0) において全微分可能であるか、理由とともに答えよ、なお、 \mathbb{R}^2 内の点 (a,b) の近傍で定義された実数値関数 g(x,y) が (x,y)=(a,b) において全微分可能であるとは、ある定数 α 、 β が存在して

$$\lim_{(h,k)\to (0,0)} \frac{g(a+h,\; b+k) - g(a,b) - (\alpha h + \beta k)}{\sqrt{h^2 + k^2}} = 0$$

が成り立つことをいう.

(東北大 2018) (m20180510)

0.123 \mathbb{R} 内の閉区間 [0,1] 上の連続関数 f(x) は $\int_0^1 f(x)dx = 1$ をみたすとする. 正の整数 n に対し

$$b_n = \int_0^1 f(x) \cos \frac{x}{\sqrt{n}} dx$$

とおくとき,

(*)
$$\lim_{n \to \infty} (b_n)^n = \exp\left(-\frac{1}{2} \int_0^1 x^2 f(x) dx\right)$$

が成り立つことを以下の設問に沿って証明せよ.

(1) 任意の $x \ge 0$ に対し

$$0 \le \cos x - 1 + \frac{x^2}{2} \le \frac{x^3}{6}$$

が成り立つことを示せ.

(2) 任意の n に対し

$$\left| b_n - 1 + \frac{1}{2n} \int_0^1 x^2 f(x) dx \right| \le \frac{1}{6n\sqrt{n}} \int_0^1 x^3 |f(x)| dx$$

が成り立つことを示せ.

(3) 任意の実数 α, β に対し

$$\lim_{n \to \infty} \left(1 + \frac{\alpha}{n} + \frac{\beta}{n\sqrt{n}} \right)^n = e^{\alpha}$$

が成り立つことを示せ.

(4) (2) および(3) の結果を利用して(*) を結論せよ.

(東北大 2018) (m20180511)

0.124 xy 平面上の点 P の座標 (x,y) が、実数 t を媒介変数として次の式で与えられる.

$$\begin{cases} x(t) = (1 + \cos t)\cos t \\ y(t) = (1 + \cos t)\sin t \end{cases}$$

ここで、 $0 \le t \le \pi$ の範囲で点 P の描く曲線を C とする. このとき、以下の問に答えよ.

- (1) x(t) および y(t) の増減表を作成し、曲線 C の概形を図示せよ.
- (2) 曲線 C の長さを求めよ.
- (3) 曲線 C と直線 $y = -\frac{1}{2}x + 1$ によって囲まれる領域の面積 A を求めよ.

(東北大 2019) (m20190501)

0.125 xyz 空間に原点 O を中心とする半径 1 の球面 S_1 , 点 P(2,0,a) を中心とする半径 r の球面 S_2 がある. 以下の間に答えよ. ただし, a, r はそれぞれ実数であり, r > 0 とする.

- (1) S_1 と S_2 が交線をもつr の範囲をa を用いて表せ.
- (2) $S_1 \, \mathsf{L} \, S_2 \, \mathsf{M} \, \mathsf{D} \, \mathsf{D$
- (3) a=0, $r=\sqrt{3}$ のとき、 S_1 と S_2 の交線を C とする. 交線 C の方程式を求めよ.
- (4) 点 $Q(0,0,\sqrt{2})$ と (3) で求めた交線 C 上の点 R を通る直線が xy 平面と交差する点を T とする. 点 R が交線 C 上を動くとき,点 T の軌跡の方程式を求めよ;

(東北大 2019) (m20190502)

0.126 次の行列 A について、以下の間に答えよ.

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 2 \\ 3 & -4 \end{array}\right)$$

- (1) 行列 A の固有値をすべて求めよ.
- (2) $P^{-1}AP$ が対角行列となるような正則行列 P を求め, $P^{-1}AP$ を計算せよ. ただし, P^{-1} は P の逆行列を表す.
- (3) n が 1 以上の整数であるとき, n を用いて \mathbf{A}^n を表せ.

(東北大 2019) (m20190503)

0.127 次の行列 *B* について、以下の問に答えよ.

$$\boldsymbol{B} = \left(\begin{array}{ccc} 5 & 2 & 0 \\ 0 & 5 & 2 \\ 0 & 0 & 5 \end{array}\right)$$

- (1) $B^2 \ge B^3$ を求めよ.
- (2) n が 1 以上の整数であるとき、n を用いて \mathbf{B}^n を表せ.

(東北大 2019) (m20190504)

- **0.128** t を実数とする. 3×4 行列 A を次で定義する. $A = \begin{pmatrix} 1 & -1 & -6 & t \\ -2 & 5 & 6 & -5 \\ 2 & -3 & -10 & 3 \end{pmatrix}$
 - (1) A の階数 rank(A) を求めよ.
 - (2) 4次元実縦ベクトル空間 ℝ⁴ の部分空間

$$W = \left\{ oldsymbol{x} = \left(egin{array}{c} a \ b \ c \ d \end{array}
ight) \middle| \ a,b,c,d$$
は実数で $Aoldsymbol{x} = \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight)
ight\}$

の次元を求めよ. また、Wの基底を一組求めよ.

(東北大 2019) (m20190505)

0.129 実数列 $\{a_n\} = \{a_n\}_{n=1}^{\infty}$ 全体のなす集合 V は、任意の二つの実数列 $\{a_n\}$ 、 $\{b_n\} \in V$ と任意の実数 s に対して、和 $\{a_n\} + \{b_n\} \in V$ とスカラー倍 $s\{a_n\} \in V$ を

$${a_n} + {b_n} = {a_n + b_n}, \quad s{a_n} = {sa_n}$$

と定義することにより、実ベクトル空間となる. V の元 $\{a_n\}$ で、漸化式

$$a_{n+4} = 4a_{n+3} + 3a_{n+2} + 2a_{n+1} + a_n \quad (n = 1, 2, 3, \dots)$$

を満たすもの全体のなす、Vの部分集合をWとする.以下の問いに答えよ.

- (1) W は V の部分空間であることを示せ.
- (2) $\{a_n\}$ を W の元とするとき a_5 , a_6 を a_1 , a_2 , a_3 , a_4 を用いて書き表せ.
- (3) i=1,2,3,4 に対して、実数列 $\{e_n^{(i)}\}=\{e_n^{(i)}\}_{n=1}^{\infty}$ は、

$$e_n^{(i)} = \left\{ egin{array}{ll} 1 & (n=i \; \mathcal{O} \, \succeq \, rac{s}{2}), \\ 0 & (n=1,2,3,4, \; n
eq i \; \mathcal{O} \, \succeq \, rac{s}{2}). \end{array} \right.$$

を満たす唯一つの W の元とする.このとき, $\{e_n^{(1)}\}$, $\{e_n^{(2)}\}$, $\{e_n^{(3)}\}$, $\{e_n^{(4)}\}$ は W の基底であることを示せ.

(4) 線形写像 $T:W\to W$ を,

$$T(\{a_n\}) = \{b_n\}$$
 ただし $b_n = a_{n+1} \ (n = 1, 2, \cdots)$

で定める. このとき、設問 (3) の基底に関する T の表現行列を求めよ. また、その行列式を求めよ.

(東北大 2019) (m20190506)

0.130 次の正方行列 A を

$$A = \left(\begin{array}{rrr} 4 & -1 & -2 \\ -1 & 4 & -2 \\ -2 & -2 & 5 \end{array}\right)$$

で定める. 以下の問いに答えよ.

- (1) Aの固有値をすべて求めよ.
- (2) Aの固有値それぞれに対して、その固有空間の基底を求めよ.
- (3) 実3変数 x, y, z の関数 f(x, y, z) を次で定義する.

$$f(x, y, z) = 4x^2 + 4y^2 + 5z^2 - 2xy - 4yz - 4zx$$

このとき f(x,y,z) の、条件

$$x^2 + y^2 + z^2 - 1 = x + y + z = 0$$

のもとでの最大値と最小値を求めよ.

(東北大 2019) (m20190507)

0.131 (1) 級数 $\sum_{n=1}^{\infty} \frac{1}{n}$ は収束しないことを示せ.

(2) 級数
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin \left(\frac{1}{n} \right) \right)$$
 は収束することを示せ.

(東北大 2019) (m20190508)

0.132 不定積分 $\int \frac{x^3 - 3x + 1}{(x - 1)^2(x + 2)} dx$ を求めよ.

(東北大 2019) (m20190509)

0.133 重積分

$$\iint_{D} (3x^{2} + y^{2}) dx dy \qquad \left(D = \left\{ (x, y) \mid x^{2} + y^{2} \le 1, \ 0 \le y \le x \right\} \right)$$

の値を求めよ.

(東北大 2019) (m20190510)

- **0.134** 点 O を原点とする xyz 空間に 3 点 A(2,1,k), B(0,2,0), C(2,0,0) がある. ただし, k は正の実数である. 線分 BC, OC の中点をそれぞれ D, E とする. $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ とするとき, 以下の問いに答えよ.
 - (1) \overrightarrow{AD} , \overrightarrow{AE} を \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} を用いてそれぞれ表せ.
 - (2) $\angle DAE = 30$ となるときの kを求めよ.
 - (3) k=1 のとき,原点から点 $A,\ B,\ C$ を通る平面におろした垂線を ℓ_1 とし,平面との交点を H と する.
 - (a) $\overrightarrow{OH} = s\vec{a} + t\vec{b} + (1 s t)\vec{c}$ と表すとき、実数 s, t を求めよ.
 - (b) 点 A, D を通る直線を ℓ_2 とするとき、直線 ℓ_1 と直線 ℓ_2 の最短距離を求めよ.

(東北大 2020) (m20200501)

0.135 任意の自然数 n に対する数列を以下の定積分により定義する.

$$I_n = \int_0^{\pi/4} \frac{dx}{\cos^{2n-1} x}$$

- (1) I₁を求めよ.
- (2) I_2 を求めよ. 必要であれば次の関係式を用いよ.

$$\frac{1}{\cos x}\frac{d}{dx}(\tan x) = \frac{1}{\cos^3 x}$$

- (3) I_n に成立する漸化式を求めよ.
- (4) 以下に示す極限を求めよ.

$$\lim_{n\to\infty} \frac{nI_n}{2^n}$$

(東北大 2020) (m20200502)

0.136 (1) 次の行列 A の逆行列 A^{-1} を求めよ.

$$A = \left(\begin{array}{ccc} 2 & 1 & 2 \\ 4 & 2 & 3 \\ 3 & 1 & 3 \end{array}\right)$$

(2) 次の行列 B について、以下の問に答えよ.

$$B = \left(\begin{array}{cc} 6 & 3\\ 4 & 5 \end{array}\right)$$

- (a) 行列 B の固有値および固有ベクトルをすべて求めよ. ただし、固有ベクトルの大きさを 1 とする.
- (b) $\mathbf{u} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ とする. n が 1 以上の整数であるとき、ベクトル $B^n \mathbf{u}$ を求めよ.
- (3) 次の行列 C について、以下の問に答えよ.

$$C = \left(\begin{array}{rrr} 3 & 2 & 2 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

- (a) $P^{-1}CP$ が対角行列となるような正則行列 P を求めよ. ただし, P^{-1} は P の逆行列を表す.
- (b) n が 1 以上の整数であるとき、行列 C^n を求めよ.

(東北大 2020) (m20200503)

0.137 次の行列 *A* の行列式 |*A*| を求めよ.

$$\mathbf{A} = \left(\begin{array}{ccc} 4 & 3 & 9 \\ 3 & 8 & 3 \\ 2 & 5 & 4 \end{array}\right)$$

(東北大 2021) (m20210501)

0.138 次の行列 B の逆行列 B^{-1} を求めよ.

$$\boldsymbol{B} = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 2 \end{array} \right)$$

(東北大 2021) (m20210502)

0.139 次の行列 C について、以下の問いに答えよ.

$$C = \begin{pmatrix} 4 & 5 \\ 8 & -2 \end{pmatrix}$$

- (a) すべての固有値と固有ベクトルを求めよ.
- (b) $P^{-1}CP$ が対角行列となるような正則行列 P を求め, $P^{-1}CP$ を計算せよ.ただし, P^{-1} は P の逆行列を示す.
- (c) n が 1 以上の整数であるとき、n を用いて C^n を表せ.

(東北大 2021) (m20210503)

- **0.140** 点 O を原点とする xyz 空間の点 A の位置ベクトルを a, 点 B の位置ベクトルを b とする. また, 点 A, 点 B を直径の両端とする球面を S とする. 以下の間に答えよ.
 - (1) 線分 AB 上に点 P があり、点 A と点 P の間の距離を s とする. \overrightarrow{OP} を求めよ.
 - (2) 球面 S 上の点 Q の位置ベクトルを r とし、球面 S の方程式を示せ.
 - (3) ${m a}=(0,0,1),\ {m b}=(0,2,1)$ のとき、点 D(0,0,d) を通り球面 S と接する直線を ℓ とする. ただし、 d は d>1 を満たす実数である.
 - (a) 直線 ℓ と xy 平面の交点を T とする. 点 T の座標を (p,q,0) と表すとき, p および q が満た す方程式を求めよ.
 - (b) 点Tの軌跡が閉曲線となるdの範囲を示し、その閉曲線によって囲まれたxy平面上の領域の面積を求めよ。

(東北大 2021) (m20210504)

0.141 微分方程式

$$\frac{d^2u(t)}{dt^2} + a^2u(t) = F(t)$$

について、以下の問いに答えよ. a は 0 でない実数とする.

- (1) F(t) = 0 のとき、一般解を求めよ.
- (2) $F(t) = \sin(at)$ のとき、一般解を求めよ.

(東北大 2021) (m20210505)

0.142 次の関数 f(x,y) について、以下の問に答えよ. x,y の範囲はそれぞれ $0 < x < \pi/2, \ 0 < y < \pi/2$ と する.

$$f(x,y) = \sin(x+y) + \cos(x-y)$$

(1) 次の偏導関数を求めよ.

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$

(2) 次式を満足する (x,y) の値をすべて求めよ.

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$$

(3) f(x,y) の極値をすべて求めよ.

(東北大 2021) (m20210506)

- **0.143** n を 1 以上の整数とし、V を n 次元実ベクトル空間とする。S と T を V から V への線形写像とし、I を V から V への恒等写像とする。 $S \circ T = I$ が成り立つと仮定する。以下の問いに答えよ。
 - $\{v_1,\cdots,v_n\}$ を V の基底とするとき、 $\{T(v_1),\cdots,T(v_n)\}$ も V の基底であることを示せ.
 - (2) Tは全射であることを示せ.
 - (3) $T \circ S = I$ が成り立つことを示せ.

(東北大 2021) (m20210507)

- **0.144** $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{pmatrix}$ を 3 次正方行列とする. 以下の問いに答えよ.
 - (1) Aの固有値をすべて求めよ. さらに、求めた固有値それぞれに対して固有ベクトルを求めよ.
 - (2) $P^{-1}AP$ が対角行列となるような正則行列 P を一つ求めよ.
 - (3) n を 2 以上の整数とする. A^n を求めよ.
 - (4) 次の式で定義される数列 $\{a_n\}_{n=0}^{\infty}$ の一般項 a_n を求めよ.

$$a_0 = a_1 = 0$$
, $a_2 = 1$, $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ $(n = 3, 4, 5, \cdots)$

(東北大 2021) (m20210508)

 $\mathbf{0.145}$ Rの区間 $I = [0, \infty)$ 上の関数 f を

$$f(x) = \frac{x}{1+x^2} \quad (x \in I)$$

と定める. I上の関数の列 $\{f_n\}_{n=0}^{\infty}$ を

(*) $f_0(x) = 0$, $f_{n+1}(x) = f_n(x) + \{f(x)\}^2 - \{f_n(x)\}^2$ $(x \in I, n = 0, 1, 2, \dots)$

と帰納的に定める. 以下の問いに答えよ.

- (1) f の I における最大値を求めよ.
- (2) 任意の非負整数 n と任意の $x \in I$ に対して

$$0 \le f_n(x) \le f(x)$$

が成り立つことを示せ.

(3) 任意の非負整数 n と任意の $x \in I$ に対して

$$f(x) - f_n(x) \le f(x)\{1 - f(x)\}^n$$

が成り立つことを示せ.

(4) $\{f_n\}_{n=0}^{\infty}$ は f に I 上で一様収束することを示せ.

(東北大 2021) (m20210509)

0.146 \mathbb{R}^2 上の関数 f を

$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{|x| + |y|} & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

と定める. 以下の問いに答えよ.

- (1) f は (0,0) において連続であることを示せ.
- (2) ℝ² の閉領域

$$D = \{ (x, y) \in \mathbb{R}^2 \mid x \ge 0, \ y \ge 0, \ x^2 + y^2 \le 1 \}$$

に対し、重積分 $\iint_D f(x,y) dx dy$ の値を求めよ.

(東北大 2021) (m20210510)

0.147 \mathbb{R}^2 上の関数 f を

$$f(x,y) = 2x^2 + 2y^2 + xy - 2x + 2y$$
 $((x,y) \in \mathbb{R}^2)$

と定める. 以下の問いに答えよ.

- (1) fの極値を求めよ.
- (2) R²の閉領域

$$E = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}$$

における f の最大値と最小値を求めよ.

(東北大 2021) (m20210511)

0.148 次の連立 1 次方程式について、以下の問に答えよ、ただし、k は定数とする.

$$\begin{cases} x + 2y + 3z = 0 \\ x + 5y + 9z = 6 \\ 3x + 5y + 7z = k \end{cases}$$

- (1) この連立 1 次方程式の係数行列 A と拡大係数行列 \widetilde{A} をそれぞれ示せ.
- (2) 拡大係数行列 \widetilde{A} を階段行列に変形し、連立 1 次方程式が解を持つような k を定めよ.
- (3) kの値が (2) で定めた値であるとき、この連立 1 次方程式を解け.

(東北大 2022) (m20220501)

0.149 次の行列 X と数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ $(n=1,2,3,\cdots)$ について、以下の間に答えよ、ただし、x は 実数とする.

$$\boldsymbol{X} = \left(\begin{array}{cccc} 1 & x & x & x \\ 0 & 1 & x & x \\ 0 & 0 & 1 & x \\ 0 & 0 & 0 & 1 \end{array} \right)$$

- (1) X^3 を求めよ.
- (2) n が 1 以上の整数であるとき、 X^n が次の形式で表されることを、数学帰納法を用いて証明せよ;

$$m{X}^n = \left(egin{array}{cccc} 1 & a_n & b_n & c_n \\ 0 & 1 & a_n & b_n \\ 0 & 0 & 1 & a_n \\ 0 & 0 & 0 & 1 \end{array}
ight)$$

(3) n が 2 以上の整数であるとき, (2) の a_n , b_n , c_n で構成される数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ の一般項を求めよ.

(東北大 2022) (m20220502)

0.150 次の極限値をそれぞれ求めよ

(1)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x - 2} - x + 1 \right)$$
 (2) $\lim_{x \to 0} \frac{x - \sin x}{x^3}$ (東北大 2022) (m20220503)

0.151 次の微分方程式をそれぞれ解け.

(1)
$$y^2 + 1 - 2x\sqrt{x - 1} \ y' = 0$$
 (2) $y'' - \sqrt{1 + y'} = 0$ ($x + 2022$) ($x + 2022$) ($x + 2022$)

0.152 極座標変換を用いて次に示す重積分を計算する.以下の間に答えよ.

$$I = \iint_{D} \frac{x - y}{(x^2 + y^2)^2} dx dy, \quad D = \left\{ (x, y) \mid 1 \le x^2 + y^2 \le 2, \ 0 \le y \le \sqrt{3}x \right\}$$

- (1) 領域 D を xy 平面上に図示せよ.
- (2) 次に示す極座標変換のヤコビ行列とその行列式(ヤコビアン)を求めよ.

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

(3) (2) の極座標変換によって、xy 平面内の領域 D は $r\theta$ 平面内の領域 \overline{D} に対応づけられる.下図に示す点 O(0,0) を原点とする r と θ の直交座標を用いて、領域 \overline{D} を図示せよ.

(4) 重積分 I を計算せよ.

(東北大 2022) (m20220505)

0.153 点 O(0,0,0) を原点とする xyz 空間において、中心を点 C(0,0,1)、半径を 1/2 とする球面 S_1 がある. 点 A(0,0,2) を通る直線を z 軸まわりに回転して得られる円錐面 S_2 が、球面 S_1 に接している. ただし、 $z \le 2$ とする.

35

- (1) 円錐面 S_2 と球面 S_1 の接点のひとつを B とするとき, $\cos \angle CAB$ を求めよ.
- (2) 円錐面 S_2 上の任意の点を P(x,y,z) とするとき、円錐面 S_2 の方程式を求めよ.

(3) 円錐面 S_2 と xy 平面で囲まれた閉曲面を S とする. 以下のベクトル場 F の面積分 I を求めよ.

$$F = (x^3 z) \mathbf{i} + (x^2 y z) \mathbf{j} + \{(x^2 + y^2)z^2\} \mathbf{k}$$

$$I = \int_{S} \mathbf{F} \cdot \mathbf{n} \ dS$$

ただし、 \mathbf{i} , \mathbf{j} , \mathbf{k} は x, y, z 軸方向の基本ベクトルであり、単位法線ベクトル \mathbf{n} は S 内部から外向 きに取るものとする.

(東北大 2022) (m20220506)

- **0.154** I を 3 次単位行列とし、A を 3 次実正方行列で固有値 2,1,-1 を持つものとする。以下の問に答えよ。
 - (1) A^4 を A^2 , A, I の線形結合で表せ.
 - (2) A は正則であることを示し、 A^{-1} を A^{2} 、A、I の線形結合で表せ.
 - (3) A^{-1} の行列式を求めよ.

(東北大 2022) (m20220507)

$$oldsymbol{0.155}$$
 n を 2 以上の整数とする. n 次元実列ベクトル $oldsymbol{a}=\left(egin{array}{c} a_1 \ dots \ a_n \end{array}
ight), \ oldsymbol{b}=\left(egin{array}{c} b_1 \ dots \ b_n \end{array}
ight)\in\mathbb{R}^n$ は、

それらの内積 $\langle {m a}, {m b} \rangle = {}^t{m a}{m b}$ について $\langle {m a}, {m b} \rangle \neq 0$ を満たすとする. n 次正方行列 A を $A = {m a}$ ${}^t{m b}$ と定める. ここで、 ${}^t{m a}$, ${}^t{m b}$ はそれぞれ ${m a}$, ${m b}$ の転置を表す. 以下の間に答えよ.

- (1) Aの階数と行列式をそれぞれ求めよ、また、Aの固有値をすべて求めよ、
- (2) k を正の整数とする. ${}^{t}bA^{k}a$ を $\langle a,b\rangle$ と k を用いてできるだけ簡潔に表せ.

(東北大 2022) (m20220508)

0.156 3次以下の実数係数多項式全体のなす集合

$$V = \left\{ a_0 + a_1 x + a_2 x^2 + a_3 x^3 \mid a_0, a_1, a_2, a_3 \in \mathbb{R} \right\}$$

を考え、V の元を $\mathbb R$ 上の実数値関数と考える. V の二つの元 f,g と実数 s に対して、和 $f+g\in V$ とスカラー倍 $sf\in V$ を

$$(f+g)(x) = f(x) + g(x),$$
 $(sf)(x) = s(f(x))$

で定めると、V は $\mathbb R$ 上の有限次元ベクトル空間となる。V から 4 次元実列ベクトル空間 $\mathbb R^4$ への線形写像 $\phi:V\to\mathbb R^4$ を

$$\phi(f) = \begin{pmatrix} f(-1) \\ f'(-1) \\ f(1) \\ f'(1) \end{pmatrix}$$

で定める. ただし f' は f の導関数である. 以下の問いに答えよ.

(1) V と \mathbb{R}^4 の基底に関する ϕ の表現行列を求めよ. ただし V の基底は $\{1, x, x^2, x^3\}$, \mathbb{R}^4 の基底は $\{e_1, e_2, e_3, e_4\}$ とし,

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad e_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

とする.

(2) 3次以下の実数係数多項式 f で、

$$f(-1) = 3,$$
 $f'(-1) = 2,$ $f(1) = -1,$ $f'(1) = 2$

を満たすものが存在するかどうか答えよ. 存在する場合はそのような多項式をすべて求め, 存在しない場合はそれを証明せよ.

(東北大 2022) (m20220509)

 $\mathbf{0.157}$ \mathbb{R}^2 上の関数 f を

$$f(x,y) = x^4 - 4x^3y - 4xy^3 + y^4$$
 $((x,y) \in \mathbb{R}^2)$

と定める. 以下の問いに答えよ.

- (1) 関数 f の x,y に関する偏導関数 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ を求めよ.
- $(2) \quad \frac{\partial f}{\partial x}(a,\;b) = \frac{\partial f}{\partial y}(a,\;b) = 0 \; となる \; \mathbb{R}^2 \; の点 \; (a,b) \; をすべて求めよ.$
- (3) 設問 (2) で求めたすべての点について、その点で f が極小値をとるか、極大値をとるか、または極値をとらないか判定せよ.

(東北大 2022) (m20220510)

0.158 n を非負整数 α を負の実数とし、広義積分

$$I(n, \alpha) = \int_0^1 x^{\alpha} (\log x)^n dx$$

を考える. 以下の問に答えよ.

- (1) $\alpha > -1$ ならばこの広義積分は収束し、 $\alpha \leq -1$ ならば発散することを示せ.
- (2) $\alpha > -1$ のとき、この広義積分の値を求めよ、

(東北大 2022) (m20220511)