[選択項目] 年度:1992年

0.1 微分方程式

$$\frac{d^2x}{dt^2} = -f(x)$$

ただし,

$$\begin{cases} x \ge 1 \text{ Obs } f(x) = 1 \\ -1 < x < 1 \text{ Obs } f(x) = x \\ x \le -1 \text{ Obs } f(x) = -1 \end{cases}$$

について,次の問に答えよ.

- (1) t=0 で x=1 かつ $\frac{dx}{dt}=0$ となる解を求めよ.
- (2) t=0 で $x=rac{3}{2}$ かつ $rac{dx}{dt}=0$ となる解を、 $0 \leq t \leq 2$ で求めよ.
- (3) t=0 で $x=\frac{5}{2}$ かつ $\frac{dx}{dt}=0$ となる解の周期を求めよ.

(横浜国立大 1992) (m19921101)

- **0.2** a , b は正の定数で, 3a > b を満たすとき,空間内に頂点を (0,0,a) ,底面を $x^2 + y^2 \le 1$, z = 0 とする円錐 K を考える.また,点 (0,2,b) を通る x 軸に平行な直線および点 (0,-1,0) を含む平面を α とする.次の間に答えよ.
 - (1) 平面 α の方程式を求めよ.
 - (2) 平面 α と円錐 K の交わりのうちで、x 座標が最大となる点を求めよ.

(横浜国立大 1992) (m19921102)

0.3 次の定積分 I_n $(n = 0, 1, 2, 3, \cdots)$ について,以下の問に答えよ.

$$I_n = \int_0^{\pi} \cos^{2n}\theta \, d\theta$$

- (1) I_0 および I_1 を求めよ.
- (2) $n=1,2,3,\cdots$ に対して、 I_n を I_{n-1} で表せ(部分積分法を利用せよ).
- (3) I_n を n の式で表せ.

(長岡技科大 1992) (m19922101)

0.4 次の無限級数の和を求めよ.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \frac{1}{1\cdot 3} + \frac{1}{2\cdot 4} + \frac{1}{3\cdot 5} + \dots$$

(長岡技科大 1992) (m19922102)

0.5 $z = \sin \frac{y}{x}$ とするとき、 $\frac{\partial z}{\partial x}$ および $\frac{\partial z}{\partial y}$ を求めよ.

(長岡技科大 1992) (m19922103)

0.6 $D = \{ (x,y) \mid x+y \le 1, x \ge 0, y \ge 0 \}$ とするとき、次の2重積分の値を求めよ.

$$\iint_D xy \, dx \, dy$$

(長岡技科大 1992) (m19922104)

0.7 次の2つの微分方程式の一般解をそれぞれ求めよ.

(1)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$$
 (2)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = x$$
 (長岡技科大 1992) (m19922105)

- **0.8** 球 : $x^2 + y^2 + (z 1)^2 = 1$ に接する平面のうちで、点 A(0,0,3) を通るものについて次の間に答えよ.
 - (1) このような平面で y 軸と平行なものの方程式を求めよ.
 - (2) このような平面のうちで x 軸 , y 軸のいずれとも交わるものを考える。それぞれの交点を P , Q とするとき,線分 PQ の長さの最小値を求めよ.

(長岡技科大 1992) (m19922106)

0.9
$$A = \begin{pmatrix} a+2b & 2-3b \\ 3-4c & a+3c \end{pmatrix}$$
 とする. 1 行 2 列 の 行 列 $X = (x \ y)$ に対 して, $X' = \begin{pmatrix} x \\ y \end{pmatrix}$ と おく. すべての x , y に対 して, 行 列 の 積 XAX' が つねに O となるような a , b , c の 値 を 求 め よ.

(長岡技科大 1992) (m19922107)

0.10
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a & b & c & d \end{pmatrix}$$
 , $E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ とするとき,行列 $xE - A$ の行列式

(長岡技科大 1992) (m19922108)