[選択項目] 年度:1991~2023年 文中:発散

- **0.1** ベクトル場 $\mathbf{a} = (x \cos z, y \log x, -z^2)$ に対して
 - (1) 発散 div a を求めよ.
 - (2) 回転 rot a を求めよ.

(北海道大 1997) (m19970103)

0.2 次の級数の収束、発散を調べ、収束する場合はその値を求めなさい.

(1)
$$\sum_{n=1}^{\infty} \left\{ \frac{2}{3^{n-1}} + 3\left(-\frac{4}{5}\right)^{n-1} \right\}$$
 (2)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
 (3)
$$\sum_{n=1}^{\infty} \frac{n+1}{3(n+2)}$$
 (1) (1)
$$\sum_{n=1}^{\infty} \left\{ \frac{2}{3^{n-1}} + 3\left(-\frac{4}{5}\right)^{n-1} \right\}$$
 (2)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
 (3)
$$\sum_{n=1}^{\infty} \frac{n+1}{3(n+2)}$$
 (1) (1)
$$\sum_{n=1}^{\infty} \left\{ \frac{2}{3^{n-1}} + 3\left(-\frac{4}{5}\right)^{n-1} \right\}$$
 (2)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
 (3)
$$\sum_{n=1}^{\infty} \frac{n+1}{3(n+2)}$$
 (1)
$$\sum_{n=1}^{\infty} \frac{n+1}{3(n+2)}$$

0.3 関数 f(x) の x = a を中心とするテイラー展開は以下のように与えられる。

$$f(x) \sim f(a) + \sum_{n=1}^{\infty} \frac{1}{n!} f^{(n)}(a)(x-a)^n = f(a) + f'(a)(x-a) + \frac{1}{2} f''(a)(x-a)^2 + \cdots$$

ただし、 $f^{(n)}(x)$ は f(x) の第 n 次導関数 $\frac{d^nf}{dx^n}$ を表す。また、f'(x) および f''(x) は f(x) の導関数 $\frac{df}{dx}$ および第 2 次導関数 $\frac{d^2f}{dx^2}$ をそれぞれ表す。特に、-1 < x < 1 に対する関数 $\frac{1}{1-x}$ および $-\infty < x < \infty$ に対する関数 e^x の x=0 を中心とするテイラー展開はそれぞれ次のように与えられる。

$$\frac{1}{1-x} \sim \sum_{n=0}^{\infty} x^n \qquad , \qquad e^x \sim \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

xを実数とし、関数 g(x) と h(x) を

$$g(x) = e^{x^2}$$
 , $h(x) = \frac{e^{x^2}}{2-x}$

と定義する.

- (1) g(x) の x = 0 を中心とするテイラー展開を求めよ.
- (2) 問 (1) の結果を用いて, h(x) の x = 0 を中心とするテイラー展開の x^2 の項までを求めよ.
- (3) h(x) の導関数 h'(x) を求めよ.
- (4) y = h(x) の $-\infty < x < \infty$ における発散する点, 極値を与える点に注意して, グラフの概略を描け.

(東北大 2004) (m20040502)

- **0.4** $\{a_n\}_{n=1}^{\infty}$ を実数列とするとき,以下の問いに答えよ.
 - (1) 級数 $\sum_{n=1}^{\infty} a_n$ が収束するならば、 $\lim_{n\to\infty} a_n = 0$ であることを示せ.
 - (2) 任意のnに対し $a_n \ge 0$ であるとする. 級数 $\sum_{n=1}^{\infty} a_n$ が発散するならば、級数

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + a_n}$$

も発散することを示せ.

(東北大 2018) (m20180509)

0.5 n を非負整数 α を負の実数とし、広義積分

$$I(n, \alpha) = \int_0^1 x^{\alpha} (\log x)^n dx$$

を考える. 以下の問に答えよ.

- (1) $\alpha > -1$ ならばこの広義積分は収束し、 $\alpha \leq -1$ ならば発散することを示せ.
- (2) $\alpha > -1$ のとき、この広義積分の値を求めよ.

(東北大 2022) (m20220511)

 $\mathbf{0.6}$ $\sum_{p=1}^{\infty} \frac{1}{n^p}$ は p>1 ならば収束し、 $p\leq 1$ ならば発散することを証明せよ.

(お茶の水女子大 1997) (m19970604)

- 0.7 (1) 次の級数の収束・発散を言え.
 - (i) $\sum_{n=1}^{\infty} n^{-2}$ (ii) $\sum_{n=1}^{\infty} n^{-1}$
 - (2) 次の関数のマクローリン展開 (x=0 のまわりの Taylor 級数展開)とその収束半径 ρ を例に従ってかけ.

(例)
$$\frac{1}{1-x} = 1 + x + x^2 + \dots (\rho = 0)$$

(i) $\frac{1}{1+x^2}$ (ii) e^x (iii) $\sin x$

(お茶の水女子大 1999) (m19990607)

0.8 3次元の位置ベクトル r

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \tag{4}$$

に対して、以下の問いに答えよ. ここで i, j, k はそれぞれ x, y, z 軸方向の単位ベクトルである。 また r = |r| である.

- (1) $\frac{\partial r}{\partial x}$, $\frac{\partial r}{\partial y}$, $\frac{\partial r}{\partial z}$ を求めよ.
- (2) $\frac{\boldsymbol{r}}{r}$ の発散, $\nabla \cdot \left(\frac{\boldsymbol{r}}{r}\right)$ を求めよ $(r \neq 0)$. ただし, $\nabla = \frac{\partial}{\partial x}\boldsymbol{i} + \frac{\partial}{\partial y}\boldsymbol{j} + \frac{\partial}{\partial z}\boldsymbol{k}$ である.

(お茶の水女子大 2010) (m20100608)

- **0.9** 整数 n に対して、 $x \neq 0$ のとき $f_n(x) = x^n \sin\left(\frac{1}{x}\right)$ 、 $f_n(0) = 0$ として $\mathbb R$ を定義域とする関数 f_n を定める
 - (1) f_n の $x \neq 0$ における微分係数 $f_n'(x)$ を求めよ. また f_1 は x = 0 で微分可能でないことを確かめよ
 - (2) 自然数 m に対して $\mathbb{R}\setminus\{0\}$ 上定義された f_n の m 階導関数 $f_n^{(m)}$ が存在する. 適当な多項式 $P_m,\ Q_m$ に対して, $x\neq 0$ で

$$f_n^{(m)}(x) = x^{n-2m} \left(P_m(x) \sin\left(\frac{1}{x}\right) + Q_m(x) \cos\left(\frac{1}{x}\right) \right)$$

が成り立ち、 $P_m(0)$ 、 $Q_m(0)$ のうち一方だけが 0 でないことを示せ. また n>1 のとき、 $f_n^{(m)}$ が \mathbb{R} 全体で定義されるための m の条件を求めよ.

(3) $n \leq 0$ のとき,広義積分

$$\int_0^1 f_n(x) dx$$

の収束、発散を調べよ.

- **0.10** N を自然数とする. このとき, 次の各間に答えよ;
 - (1) $y \ge 0$ に対して、次が成り立つことを示せ.

$$e^y \ge \frac{y^N}{N!}$$

- (2) 広義積分 $\int_0^\infty e^{-2x} (1+x)^N dx$ の収束・発散を調べよ.
- (3) 数列 $\{a_n\}$ を $\int_{\frac{1}{n+1}}^{\frac{1}{n}} t \left(1 + \log \frac{1}{t}\right)^N dt$ $(n = 1, 2, \cdots)$ で定める. このとき, 極限 $\lim_{n \to \infty} a_n$ を求めよ.

(お茶の水女子大 2021) (m20210604)

0.11 実 3 次元空間の任意の点を (x,y,z) と表すとき,ベクトル $\vec{V}=(yz,zx,xy)$ の発散 $({\rm div}\vec{V})$ と回転 $({\rm rot}\vec{V})$,及び $|\vec{V}|$ の勾配 $({\rm grad}|\vec{V}|)$ を求めよ.

(お茶の水女子大 2022) (m20220607)

0.12 3つのベクトル場 \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} を考える. 各ベクトル場は次のように定義する.

$$\overrightarrow{A} = rf(r, z) \overrightarrow{e}_{\theta}$$

$$\overrightarrow{B} = \overrightarrow{\nabla} \times \overrightarrow{A}$$

$$\overrightarrow{C} = \overrightarrow{\nabla} \{ zf(r, z) \}$$

ただし、f(r,z) は

$$f(r,z) = (r^2 + z^2)^{-3/2}$$

とする.円柱座標系 (r,θ,z) における基底ベクトルを $(\overrightarrow{e}_r,\overrightarrow{e}_\theta,\overrightarrow{e}_z)$ とし,以下の問いに答えよ.必要であればスカラー場 ϕ およびベクトル場 $\overrightarrow{V}=\overrightarrow{e}_rV_r+\overrightarrow{e}_\theta V_\theta+\overrightarrow{e}_zV_z$ に対する以下の勾配,発散,回転の式を用いてよい.

$$\overrightarrow{\nabla}\phi = \overrightarrow{e}_r \frac{\partial \phi}{\partial r} + \overrightarrow{e}_\theta \frac{1}{r} \frac{\partial \phi}{\partial \theta} + \overrightarrow{e}_z \frac{\partial \phi}{\partial z}$$

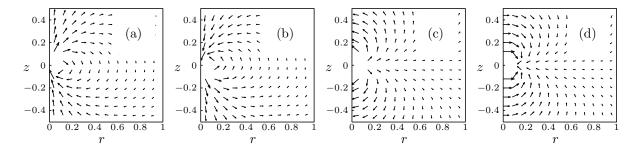
$$\overrightarrow{\nabla} \cdot \overrightarrow{V} = \frac{1}{r} \frac{\partial}{\partial r} (rV_r) + \frac{1}{r} \frac{\partial V_\theta}{\partial \theta} + \frac{\partial V_z}{\partial z}$$

$$\overrightarrow{\nabla} \times \overrightarrow{V} = \overrightarrow{e}_r \left(\frac{1}{r} \frac{\partial V_z}{\partial \theta} - \frac{\partial V_\theta}{\partial z} \right) + \overrightarrow{e}_\theta \left(\frac{\partial V_r}{\partial z} - \frac{\partial V_z}{\partial r} \right) + \overrightarrow{e}_z \left(\frac{1}{r} \frac{\partial}{\partial r} (rV_\theta) - \frac{1}{r} \frac{\partial V_r}{\partial \theta} \right)$$

- (1) $\overrightarrow{\nabla} \cdot \overrightarrow{B}$ を求めよ.
- (2) $r \le r_0$ および $z = z_0$ により定義される円板面 S_0 を考える $(z_0 > 0)$. 面の法線方向を \overrightarrow{e}_z とするとき、この円板面における次の面積分 Φ を、必要があれば r_0 、 z_0 用いて、表わせ.

$$\Phi = \int_{S_0} \overrightarrow{B} \cdot d\overrightarrow{S}$$

- (3) \overrightarrow{B} および \overrightarrow{C} を求めよ.
- (4) ベクトル場 \overrightarrow{B} および \overrightarrow{C} の分布の概略として正しい図を下の (a)-(d) からそれぞれ選べ.



(5) $r \le r_0$ および $z_1 \le z \le z_2$ により定義される円柱 $(z_1 > 0)$ に対し、側面と両底面からなる閉曲面 S_1 を考える。面の法線方向を円柱外向きとする。この閉曲面における次の面積分 Q を、必要であれば r_0, z_1, z_2 を用いて、表わせ.

$$Q = \int_{S_1} \overrightarrow{C} \cdot d\overrightarrow{S}$$

(東京大 2018) (m20180703)

0.13 以下の問いに答えよ. ただし, x は実変数, y は x に関する実関数であり,

$$y'' = \frac{d^2y}{dx^2}$$
, $y' = \frac{dy}{dx}$ とする. また, e は自然対数の底とする.

(1) 次の微分方程式について考える. ただし, y は, 任意のx に対しy > 0 を満たすものとする.

$$y' - 2y\sin^2(x) = \frac{e^{2x}\cos(2x)}{y}$$

(a) 関数 f(x) を次式により定義する. 定積分を計算し、f(x) を求めよ.

$$f(x) = \int_0^x [-2\sin^2(t)] dt$$

- (b) $z = ye^{f(x)}$ とするとき、 $\frac{dz}{dx}$ を x と z の関数として表せ.
- (c) uの一般解を求めよ.
- (2) 次の微分方程式について考える. ただし, α および n は実定数であり, α は $-1 \le \alpha \le 1$ を満た すものとする.

$$y'' - 2\alpha y' + y = 2e^x$$

- (a) y の特解を求めよ.
- (b) y の一般解を求めよ.
- (c) $\alpha = 1$ とする. y(0) = 1 および y'(0) = 2 を満たす y に関して、次の極限の収束・発散を調べよ、収束する場合にはその極限値を求めよ、

$$\lim_{x \to +0} y^{x^{-n}}$$

(東京大 2022) (m20220701)

0.14 $\beta, \gamma < 0$ とする. 次の広義積分の値を求めよ. ただし、広義積分が ∞ に発散する場合には、その値 $\delta \infty$ とする.

(1)
$$\iint_{0 < x^2 + y^2 \le 1} (x^2 + y^2)^{\beta} dx dy$$
 (2)
$$\iint_{x^2 + y^2 \ge 1} (x^2 + y^2)^{\gamma} dx dy$$
 (東京工業大 2009) (m20090803)

0.15 実変数 t の関数 x(t) が微分方程式

$$\frac{d^2x}{dt^2} = \frac{dx}{dt}$$

を満たしている.

- (1) $t \to -\infty$ のとき、x(t) は有限の値に収束することを示せ.
- (2) $t \to +\infty$ のとき, x(t) が $+\infty$ にも $-\infty$ にも発散しないならば, x(t) は定数関数であることを示せ.

(東京工業大 2009) (m20090804)

- **0.16** x の関数 $f(x) = e^{-x^2}$ に関して以下の問題に答えなさい.
 - (1) f を 1 回微分した導関数 f'(x) を求めなさい.
 - (2) f を n 回微分した導関数を $f^{(n)}(x)$ と表すとき、ある n 次の多項式 $\phi_n(x)$ によって、 $f^{(n)}(x)=\phi_n(x)e^{-x^2}$ と表せることを証明しなさい.
 - (3) n を任意に固定する. このとき $\lim_{x\to\infty}f^{(n)}(x)$ は収束するか. それとも発散するか. 理由を付して答えなさい.

(筑波大 2011) (m20111306)

0.17 $\alpha > 0$ とする. $x \ge 1$ で定義された関数 $f_{\alpha}(x)$ は、

$$x \in [n, n+1)$$
 において $f_{\alpha}(x) = \frac{1}{n^{\alpha}}$

となるものとする. ただし、n は自然数とする. このとき

$$\int_{1}^{N+1} f_{\alpha}(x)dx = \sum_{n=1}^{N} \frac{1}{n^{\alpha}}$$

となることを利用して次の問いに答えよ.

- (1) $\alpha > 1$ のとき $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ が収束することを示せ.
- (2) $\alpha \le 1$ のとき $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ が発散することを示せ.

(埼玉大 2011) (m20111410)

0.18 i, j, k を基本ベクトルとする xyz 空間上のベクトル場 A = xi + 2yj + 3zk の面積分 $\int_S A \cdot dS$ を、発散定理を用いて求めよ。S は原点を中心とする半径 1 の球面とする.

(埼玉大 2016) (m20161405)

0.19 広義積分 $I = \int_2^\infty \frac{1}{x^2 + \sin x} dx$ の収束・発散を調べよ.

(信州大 2021) (m20211902)

0.20 次の級数が収束するときはその和を求めよ、発散するときはその理由を述べよ、

$$(1) \quad \sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

$$(2) \sum_{n=1}^{\infty} \frac{n}{n+1}$$

(新潟大 2006) (m20062001)

- 0.21 次の各問いに答えよ.
 - (1) 0 < a < 1 を満たす任意の実数 a に対して、 $\lim_{n \to \infty} na^n = 0$ を示せ.
 - (2) 0 < a < 1 を満たす任意の実数 a に対して、次の級数の収束・発散を調べよ、収束するときはその和も求めよ、

$$\sum_{n=1}^{\infty} na^{n-1}$$

(3) 次の関数の極限値を求めよ.

$$\lim_{x \to 0} \frac{\sin 3x - 3\sin x}{x^3}$$

(4) 次の関数の極限値を求めよ.

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$

(新潟大 2012) (m20122014)

0.22 任意の x, y, z について

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -4x + y + 4z \\ -4x + 3y + 2z \\ -x + y + z \end{pmatrix}$$

となる 3×3 行列 A を考える. 次の問いに答えよ.

- (1) Aを求めよ.
- (2) A の固有値 λ_1 , λ_2 , λ_3 ($\lambda_1 < \lambda_2 < \lambda_3$) と、それぞれに対応する長さ 1 の固有ベクトル p_1, p_2, p_3 を求めよ.
- (3) B を A の逆行列,n を自然数とするとき, B^n の固有値を $\mu_1^{(n)}$, $\mu_2^{(n)}$, $\mu_3^{(n)}$ ($\mu_1^{(n)} < \mu_2^{(n)} < \mu_3^{(n)}$) とおく. 数列 $a_n = \frac{\mu_1^{(n)}\mu_3^{(n)}}{\mu_2^{(n)}}$ ($n=1,2,\cdots$)に対して,無限級数 $\sum_{n=1}^{\infty} a_n$ の収束発散を調べよ. 収束する場合はその値を求めよ.

(金沢大 2015) (m20152201)

0.23 次の広義積分の収束・発散を判定せよ.

(1)
$$\int_0^\infty \frac{dx}{x^2 + 3x}$$
 (2) $\int_0^\infty \frac{dx}{\sqrt{x^2 + 1}}$ (3) $\int_0^\infty \frac{dx}{\sqrt{x^3 + 1}}$ (\hat{x}) \hat{x}) ($\hat{x$

0.24 λ を実数, t > 0 とする. このとき, 閉領域

$$D_t = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, \ x^2 + y^2 \le t^2 \}$$

上の重積分

$$I(t) = \iint_{D_{\bullet}} (1 + x^2 + y^2)^{\lambda} dx dy$$

を考える. 次の問いに答えよ.

- (1) I(t) を具体的に t の式で表せ.
- (2) $t \to \infty$ としたとき、I(t) の収束・発散を調べ、収束する場合はその極限値を求めよ.

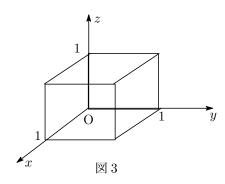
(金沢大 2016) (m20162205)

- **0.25** 次の計算をしなさい. ただし, i, j, k はそれぞれ x 軸, y 軸, z 軸方向の単位ベクトルである.
 - (1) スカラー関数 $\phi = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ の勾配
 - (2) ベクトル関数 $\mathbf{A} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ の発散
 - (3) ベクトル関数 v = yi xj の回転

(金沢大 2016) (m20162209)

- **0.26** ベクトル関数 $A(x,y,z) = (x^2,y^2,1)$ について、以下の各問いに答えなさい.
 - (1) A の発散 $\nabla \cdot A$ を求めなさい.

(2) 図 3 に示した一辺の長さが 1 の立方体の表面を S とする. 閉曲面 S における面積分 $\iint_S {\bf A} \cdot {\bf n} \ dS$ を求めなさい. ただし, ${\bf n}$ は S 上の単位法線ベクトルである.



(金沢大 2022) (m20222213)

- **0.27** (1) 位置ベクトル $\overrightarrow{r}=(x,y,z)$ とし、スカラー関数 $f(x,y,z)=\frac{1}{|\overrightarrow{r}|}=\frac{1}{\sqrt{x^2+y^2+z^2}}\,$ の勾配 $\operatorname{grad} f$ を、 \overrightarrow{r} を用いて表せ、
 - (2) ベクトル関数 $\overrightarrow{A}(x,y,z) = (x^2y,xy^2,2z)$ の発散 div \overrightarrow{A} を求めよ.
 - (3) スカラー関数 f(x,y,z) について、その勾配の回転 rot grad f は、常に零ベクトルとなることを示せ、

(富山大 2009) (m20092302)

- **0.28** $\phi(x,y,z) = e^{2x^2-4y^3+z^2}$, $\overrightarrow{A}(x,y,z) = 2xyz^3\overrightarrow{i} + x^2z^3\overrightarrow{j} + 3x^2yz^2\overrightarrow{k}$ について、次の問いに答えよ、ただし、 \overrightarrow{i} 、 \overrightarrow{j} 、 \overrightarrow{k} は直交座標の単位ベクトルである.
 - (1) $\operatorname{rot} \overrightarrow{A} = \overrightarrow{0}$ を示せ.
 - (2) 点 (1,1,-1) において、 $\phi \overrightarrow{A}$ の発散の値を求めよ.
 - (3) 点 (1,1,-1) における ϕ の点 (-3,5,6) に向かう方向の方向微分係数を求めよ.
 - (4) $\int_S \overrightarrow{A} \cdot \overrightarrow{n} dS$ の値を求めよ. ただし, S は円柱面 : $x^2 + y^2 = 1$ の $x \ge 0$, $y \ge 0$, $0 \le z \le 1$ を満たす部分とし, \overrightarrow{n} はS の単位法線ベクトルとする.

(富山大 2014) (m20142303)

- **0.29** 空間座標の原点 O からの距離 r で定義される関数 $\varphi(r) = \log_e r \ (r>0)$ について次の各問いに答え よ. ただし, \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} を直交座標系 O-xyz の単位ベクトルとし, $\overrightarrow{r}=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}$, $r=|\overrightarrow{r}|$ であるとする.
 - (1) 点 P(1,1,0) を含む等位面(関数の値が等しい点の集合)の点 P における単位法線ベクトル \overrightarrow{n} の x,y,z 成分を求めよ.
 - (2) 点 Q(0,0,1) における,ベクトル $\overrightarrow{a}=\overrightarrow{i}+2\overrightarrow{j}+2\overrightarrow{k}$ の方向への $\varphi(r)$ の方向微分係数を求めよ.
 - (3) 勾配の発散 $\nabla^2 \varphi(r)$ を r の関数として求めよ.
 - (4) 勾配の回転 $\nabla \times \nabla \varphi(r)$ が $\overrightarrow{0}$ であることを示せ.

(富山大 2015) (m20152307)

- **0.30** スカラー関数 $f(x,y,z) = e^{-\frac{1}{2}(x^2+y^2+z^2)}$ について、次の各問いに答えよ. ただし、 \overrightarrow{i} 、 \overrightarrow{j} 、 \overrightarrow{k} は、それぞれ直角座標系の x,y,z 方向の単位ベクトルとする.
 - (1) 点 $P\left(\sqrt{2},\sqrt{2},0\right)$ を含む等位面(関数 f の値が等しい点の集合)の点 P における単位法線ベクトル \overrightarrow{n} の x,y,z 成分を求めよ.

- (2) 関数 f の勾配の発散 $\nabla \cdot \nabla f$ を求めよ.
- (3) 関数 f の勾配の回転 $\nabla \times \nabla f$ を計算し、 $\overrightarrow{0}$ となることを示せ.
- (4) 点 Q(1,0,1) における、ベクトル $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \sqrt{2} \overrightarrow{k}$ の方向への f の方向微分係数を求めよ.

(富山大 2017) (m20172303)

- 0.31 ベクトル解析に関して以下の問いに答えよ.
 - (1) $f = e^x \sin y$ に対する勾配(grad f)を求めよ.
 - (2) ベクトル $\mathbf{v} = 3xz\mathbf{i} + 2xy\mathbf{j} yz^2\mathbf{k}$ の発散 (div \mathbf{v}) を求めよ. (ただし, \mathbf{i} , \mathbf{j} , \mathbf{k} はそれぞれ x-, y-, z- 方向の単位方向成分を表すものとする.)

(岐阜大 2001) (m20012613)

- **0.32** $y' = \frac{dy}{dx}$ とする. 以下の問に答えよ.
 - (1) 微分方程式

$$(E_1) \quad y' - yx = 0$$

の一般解を求めよ.

(2) 微分方程式

$$(E_2) \quad y' - yx\cos(x^2) = 0$$

の一般解を求めよ.

(3) e を自然対数の底として、 α 、 β を実数とする。 微分方程式

$$(E_3)$$
 $y' - \alpha y = e^{\beta x}$

の一般解を求めよ.

(4) γを実数とする. 微分方程式

$$(E_4)$$
 $y' - yx(\gamma + \cos(x^2)) = 0$

の解 y(x) で初期条件 y(0)=1 を満たすものを求めよ. $\lim_{x\to\infty}\frac{y(x)}{x}$ の収束・発散を判定せよ.

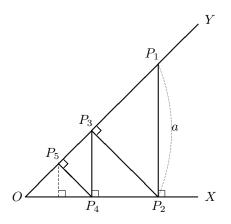
(岐阜大 2022) (m20222602)

- 0.33 次の各問いに答えよ.
 - (1) 次の無限数列の一般項を示し、収束・発散を調べ、収束する場合にはその極限値を求めよ.

(a)
$$\frac{3}{1}$$
, $\frac{5}{4}$, $\frac{7}{7}$, $\frac{9}{10}$, $\frac{11}{13}$,

(b)
$$\sqrt{2} - \sqrt{1}$$
, $\sqrt{4} - \sqrt{2}$, $\sqrt{6} - \sqrt{3}$,

- (2) 図において、 $\angle XOY = \pi/4$ 、 P_1P_2 の長さを a とする. OY 線上の点 P_1 から、OX 線上に垂線を下ろした点を P_2 とする. さらに点 P_2 から OY 線上に垂線を下ろし、その点を P_3 とする. 同様に順次、 P_4 、 P_5 、……を無限にとるものとする. このとき、次の問いに答えよ.
 - (a) 垂線(線分)の和を級数で示せ.
 - (b) 垂線(線分)の和を求めよ.



(3)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3}$$
 を求めよ.

(豊橋技科大 1999) (m19992704)

- **0.34** xyz 空間で円柱 $x^2 + y^2 = 4$, xy 平面,放物面 $z = x^2 + y^2$ で囲まれた領域を D とし,D の境界を S とする. $\mathbf{F} = y\mathbf{i} + xy\mathbf{j} z\mathbf{k}$ とする.
 - (1) ベクトル場 F の発散を求めよ.
 - (2) 発散定理を用いて、ベクトル場 \mathbf{F} の曲面 S を貫く外向きの流束 (flux) を求めよ.

(名古屋工業大 2003) (m20032904)

- **0.35** 3次元空間の位置ベクトルを $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ とする. ここで、 $\mathbf{i}, \mathbf{j}, \mathbf{k}$ は、直交座標系の x, y, z 軸方向の単位ベクトルである. 以下の問いに答えよ.
 - (1) r の発散, $\nabla \cdot r$ を求めよ. ただし, $\nabla = i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}$ である. $\nabla \cdot r$ は, $\operatorname{div} r$ とも書く.
 - (2) w = ck とするとき、 $v = w \times r$ の回転、 $\nabla \times v$ を求めよ. ただし、c は定数である. $\nabla \times v$ は、rot v とも書く.

(奈良女子大 2007) (m20073209)

0.36 以下の級数の収束,発散を判定せよ.

(1)
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$
 (2) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ (3) $\sum_{n=1}^{\infty} \frac{1}{n}$ (奈良女子大 2014) (m20143206)

- ${m 0.37}$ ${m r}=(x,y,z), \ r=|{m r}|=\sqrt{x^2+y^2+z^2}$ とする. 以下の量を計算せよ.
 - (1) r の勾配 ∇r
 - (2) $\frac{1}{r}$ の勾配 $\nabla \frac{1}{r}$
 - (3) **r** の発散 ∇ · **r**
 - (4) $\omega = (0,0,\omega)$ (ω は正の実定数) とするときの, $\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$ の回転 $\nabla \times \mathbf{v}$

ここで、∇は以下で定義される微分演算子である.

$$\nabla = \left(\frac{\partial}{\partial x}, \ \frac{\partial}{\partial y}, \ \frac{\partial}{\partial z}\right)$$

(奈良女子大 2017) (m20173207)

0.38 次に示す漸化式により帰納的に定められた数列 $\{a_n\}$ および $\{b_n\}$ について、以下の問いに答えよ.

$$a_1 = 3, \quad a_{n+1} = -\frac{1}{2}a_n$$

$$b_1 = 1$$
, $b_2 = 4$ $b_{n+2} = \frac{b_n + b_{n+1}}{2}$

- (1) $\{a_n\}$ の初項から第 N 項までの和 A_N を求めよ.
- (2) $n \to \infty$ のとき $\{A_n\}$ の収束・発散を調べ、収束する場合にはその極限値を求めよ.
- (3) 第n項が $c_n = b_{n+1} b_n$ で与えられる数列 $\{c_n\}$ の一般項を求めよ.
- (4) $\{b_n\}$ の一般項を求めよ.
- (5) $n \to \infty$ のとき $\{b_n\}$ の収束・発散を調べ、収束する場合にはその極限値を求めよ.

(大阪大 2008) (m20083510)

- **0.39** 行列 $A = \begin{pmatrix} a & 0 & -1 \\ 0 & 1 & 0 \\ -b & 0 & a \end{pmatrix}$ について以下の問いに答えよ. ただし,a,b は実数とする.
 - (1) A の固有値と、それぞれの固有値に属する固有ベクトルを求め、すべての固有値と固有ベクトルが実数であるための条件を述べよ.
 - (2) A の逆行列が存在するための条件を述べ、逆行列 A^{-1} を求めよ.
 - (3) 問い (2) の結果を用い,逆行列 A^{-1} が存在するときの連立方程式 $A\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ の解を求めよ.
 - (4) A を対角化する行列 P を一つ示し、A を対角化せよ.
 - (5) A^n を求めよ. また, $n \to \infty$ のとき A^n のすべての要素が実数を持ち, かつ発散しないための a,b の範囲を示せ.

(大阪大 2020) (m20203501)

- 0.40 以下の問に答えよ.
 - (1) 級数 $\sum_{n=1}^{\infty} \frac{1}{n}$ は発散することを示せ.
 - (2) m 桁の自然数のうちで、0 の文字が入らないものの個数を答えよ. 例えば m=3 のときなら、 $111,112,113,\cdots,119,121,\cdots,999$ の個数で、 9^3 である.
 - (3) (1) の和からnに0の文字が入った項,例えば, $\frac{1}{10}$, $\frac{1}{20}$, \cdots , $\frac{1}{100}$, $\frac{1}{101}$, \cdots などを抜いた級数をSとする.すなわち,

$$S = 1 + \frac{1}{2} + \dots + \frac{1}{9} + \frac{1}{11} + \dots + \frac{1}{19} + \frac{1}{21} + \dots$$

このとき、S は収束することを示せ.

(神戸大 2012) (m20123806)

0.41 (-1,1) で定義された C^{∞} -級関数 f(x) は次の微分方程式を満たすとする:

$$(1-x^2)f'(x) - xf(x) = 1, \quad f(0) = 0.$$

自然数 n に対し、 $a_n = \frac{f^{(n)}(0)}{n!}$ とおく.

- (1) a_n を求めよ.
- (2) $\int_0^1 (1-x^2)^n dx \le \frac{1}{2} \sqrt{\frac{\pi}{n}} \text{ が成り立つことを示せ. ただし, 不等式 } 1-x \le e^{-x} \quad (0 \le x \le 1) \text{ および等式 } \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \text{ は証明せずに用いてよい.}$
- (3) $n \to \infty$ のとき数列 $\{a_n\}$ の収束・発散を判定せよ. また、収束するときは極限値を求めよ.

(神戸大 2018) (m20183805)

- $\textbf{0.42} \quad (1) \quad 不等式 \ 0 \leq \ t \log(1+t) \leq \frac{t^2}{2} \quad (t \geq \ 0) \ が成り立つことを示せ.$
 - (2) 級数

$$\sum_{n=1}^{\infty} \frac{1}{n^k}$$

はK=1のときに発散し、k=2のとき収束することを示せ.

(3) 全てのx > 0に対して、級数

$$f(x) = \sum_{n=1}^{\infty} \log\left(1 + \frac{x}{n}\right)$$

は発散することを示せ.

(4) 全ての $x \ge 0$ に対して、級数

$$g(x) = \sum_{n=1}^{\infty} \left\{ \log \left(1 + \frac{x}{n} \right) \right\}^2$$

は収束することを示せ.

(岡山大 2015) (m20154002)

- **0.43** 関数 f(x) を $f(x) = \begin{cases} \frac{e^x 1}{x} & (x \neq 0 \text{ のとき}) \\ 1 & (x = 0 \text{ のとき}) \end{cases}$ で定める. 以下の問いに答えよ.
 - (1) e^x のマクローリン展開を書け.
 - (2) $a_k \ (k=0,1,2,\cdots)$ を $f(x) = \sum_{k=0}^{\infty} a_k x^k$ により定める. $a_k \ (k=0,1,2,\cdots)$ の値を求めよ.
 - (3) f(x) の第 n 次導関数を $f^{(n)}(x)$ で表す. $f^{(99)}(0)$ を求めよ.
 - (4) 広義積分 $\int_{-\infty}^{0} f(x)dx$ が収束するか発散するかを判定せよ.

(岡山大 2016) (m20164002)

- 0.44 以下の問いに答えよ.
 - (1) 無限級数 $\sum_{n=1}^{\infty} \frac{1}{n}$ が発散することを示せ.
 - (2) 無限級数 $\sum_{n=1}^{\infty} \frac{1}{\log(n+1)}$ の収束・発散を調べよ.
 - (3) 極限値 $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{\log(1+x)}\right)$ を求めよ.
 - (4) 極限値 $\lim_{x\to 0} \frac{x^2 \sin\frac{1}{x}}{\sin x}$ を求めよ.

(広島大 2012) (m20124102)

0.45 非負整数 n に対し,

$$a_n = \frac{(2n)!}{(n!)^2}$$

と定める. ただし、0! = 1とする. 以下の問いに答えよ

(1) x を実数とする.級数

$$\sum_{n=0}^{\infty} a_n x^n$$

は 4|x| < 1 のとき絶対収束し、4|x| > 1 のとき発散することを示せ.

(2) 4|x| < 1 満たす実数 x に対し,

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

と定める. このとき,

$$(1-4x)f'(x) = 2f(x)$$

が成り立つことを示せ、ここで、f'(x) は f(x) の導関数を表す。

(3) 4|x| < 1 満たす実数 x に対し,

$$\sqrt{1-4x}\sum_{n=0}^{\infty}a_nx^n=1$$

が成り立つことを示せ.

(4) 級数

$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2 4^n}$$

は ∞ に発散することを示せ.

(広島大 2021) (m20214105)

0.46 無限積分 $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$, $\int_{-\infty}^{\infty} \frac{2x}{1+x^2} dx$ の収束発散を調べ、収束する場合はその値を求めよ.

(広島市立大 2012) (m20124201)

- $\mathbf{0.47}$ 一般項が $a_n \geq 0$ の級数(正項級数) $\sum_{n=1}^{\infty} a_n$ に対して、次を示せ.
 - $(1)\quad \sum_{n=1}^{\infty}a_n\;\text{が収束するとき}\sum_{n=1}^{\infty}\frac{a_n}{1+a_n}\;\text{および}\sum_{n=1}^{\infty}\frac{a_n}{1+na_n}\;\text{は収束する}.$
 - (2) $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ が収束するとき $\sum_{n=1}^{\infty} a_n$ は収束する.
 - (3) $\sum_{n=1}^{\infty} \frac{a_n}{1+na_n}$ が収束しても $\sum_{n=1}^{\infty} a_n$ は収束しないことがある. その具体的な例を示せ.
 - $(4) \quad \sum_{n=1}^{\infty} a_n \ \mathcal{O}$ 収束, 発散に関係なく $\sum_{n=1}^{\infty} \frac{a_n}{1+n^2 a_n}$ は収束する.

(徳島大 2004) (m20044401)

- **0.48** 自然数 n に対して $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ とおく. 次の問いに答えよ.
- **0.49** (1) n=0,1,2 に対して、次の不定積分を求めよ. $\int \frac{x^n}{x^2+1} dx$

(2) *n* を負でない整数とするとき,次の広義積分は収束するか発散するか,いずれであるかを判定せよ.収束する場合は広義積分の値を求め,発散する場合はその理由を示せ.

$$\int_{1}^{\infty} \frac{x^n}{x^2 + 1} dx$$

(九州大 2007) (m20074711)

0.50 $f(x) = \sin \frac{x}{2}$, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$, $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$,

 $g(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ とおく. ただし、n を自然数とする.

- (1) フーリエ係数 a_n , b_n を計算せよ.
- (2) $\sum_{n=1}^{\infty} (|a_n| + |b_n|)$ は発散することを示せ.
- (3) フーリエ級数 g(x) は $x = \frac{\pi}{2}$ で収束することを示せ.
- (4) $x = \pm \pi$ で f(x) と g(x) がどのような関係にあるか述べよ.

(九州大 2009) (m20094703)

- **0.51** a = 4, 0, -4 のそれぞれの場合に対して,以下の問いに答えよ.
 - (1) 次の不定積分をを求めよ.

$$\int \frac{1}{x^2 + a} \, dx$$

(2) 次の広義積分について、収束する場合には広義積分の値を求め、発散する場合にはその理由を示せ.

$$\int_0^\infty \frac{1}{|x^2 + a|} \, dx$$

(九州大 2010) (m20104710)

- 0.52 次の各問いに答えよ.
 - (1) 広義積分 $\int_3^\infty \frac{dx}{\sqrt{(x-2)^3}}$ を求めよ.
 - (2) 広義積分 $\int_1^\infty \frac{dx}{x\sqrt{|x-2|}}$ は収束するか発散するか、いずれであるかを判定せよ.

(九州大 2011) (m20114701)

0.53 a, b は a > 0, b > 0 なる定数とする. x > 0, y > 0 において 2 変数関数 f(x, y) を次の式で定義する.

$$f(x,y) = \left(\frac{a}{r}\right)^{\frac{b}{y}}$$

このとき、以下の各問いに答えよ.

- (1) f(x,y) の x に関する偏導関数および y に関する偏導関数を求めよ.
- (2) y>0 なる y を固定する. このとき、次の積分(広義積分)は収束するか発散するかを理由を示して答えよ. さらに、収束する場合には、積分の値を求めよ

$$f(y) = \int_0^1 f(x, y) dx$$

(九州大 2016) (m20164708)

- **0.54** 以下の問いに答えよ. ただし. ℝ は実数全体を表すとする.
 - (1) 次の広義積分は収束することを示せ.

$$\int_0^\infty \frac{1 - e^{-x^2}}{x^2} \, dx$$

(2) $D_1 = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x, 0 \le y \le 1\}$ として、次の広義積分の収束・発散を調べよ.

$$I_1 = \iint_{D_1} e^{-x^2 y} \, dx dy$$

(3) $D_2 = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ 0 \le y\}$ として、次の広義積分の収束・発散を調べよ.

$$I_2 = \iint_{D_2} e^{-x^2 y} \, dx dy$$

(九州大 2021) (m20214710)

- **0.55** 次の問に答えよ. ただし、 \log は自然対数を表す. 自然対数の底は $e=2.718\cdots$ である.
 - (1) 次の積分(広義積分)の値を求めよ.

$$\int_0^1 \frac{1}{\sqrt{x}} dx = \lim_{\varepsilon > 0, \ \varepsilon \to 0} \int_{\varepsilon}^1 \frac{1}{\sqrt{x}} dx$$

(2) 極限値に関する次の二つの等式が成り立つことを証明せよ.

$$\lim_{x>0,\ x\to 0} x\log x = 0 \quad , \qquad \lim_{x>0,\ x\to 0} x^x = 1$$

(3) 閉区間 [0,1] 上の関数 f,g を次のように定義する.

$$0 < x \le 1$$
 \emptyset $\xi \not \ge f(x) = x \log x$, $g(x) = x^x$, $f(0) = 0$, $g(0) = 1$

このとき、f,g の各々について、[0,1] における最大値と最小値を求めよ.

(4) 次の積分(広義積分)は有限値に収束するか、それとも無限大に発散するか、いずれであるか判定せよ、その理由も示せ、

$$\int_0^1 \frac{x^x}{\sqrt{x}} dx$$

(九州芸術工科大 2000) (m20004802)

- 0.56 以下の問に答えよ.
 - (1) (x,y,z) 空間内の 3 点を $A(x_1,y_1,z_1)$, $B(x_2,y_2,z_2)$, $C(x_3,y_3,z_3)$ とするとき, ベクトル \overrightarrow{AB} , \overrightarrow{AC} , $\overrightarrow{AB} \cdot \overrightarrow{AC}$, $\overrightarrow{AB} \times \overrightarrow{AC}$ をこれらの座標で示せ.
 - (2) $f(r)=\frac{1}{r}$, $r=\sqrt{x^2+y^2+z^2}$ とするとき, f(r) の傾き $\nabla f(r)$ およびその発散 $\nabla\cdot\left[\nabla f(r)\right]=\nabla^2 f(r)$ を求めよ. 但し, $r\neq 0$ とする.

(長崎大 2005) (m20055014)

- 0.57 次の級数について、収束・発散を調べよ、収束する場合、その値を求めよ.
 - (1) $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots$

(2)
$$\lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right)$$

(鹿児島大 2005) (m20055412)

- $\mathbf{0.58}$ (1) 関数 $\frac{\log x}{x}$ の不定積分を求めよ.
 - (2) $\lim_{n \to +\infty} \int_{n}^{2n} \frac{\log x}{x} dx$ は正の無限大に発散することを示せ.
 - (3) 級数 $\sum_{n=1}^{\infty} \frac{\log n}{n}$ が収束するならば、その極限値を求めよ. もし発散するならば、その理由を述べよ.
 - (4) $\lim_{\substack{n\to\infty\\ \text{d} \equiv \text{U}}} a_n = 0$ をみたす数列 a_n に対して $b_n = a_n + a_{n+1} + \dots + a_{2n}$ とおくとき、 $\lim_{\substack{n\to\infty\\ \text{n} \to \infty}} b_n = 0$ は正しいだろうか ? 正しければその理由を述べよ、もし正しくなければ反例を一つ与えよ、

(島根大 2007) (m20075805)