[選択項目] 年度:1991~2023年 文中:法線

- **0.1** 以下の問いに答えよ. ただし, ベクトルの内積を "·", 外積を "×" と表すものとする.
 - (1) 以下の文章では、平面の方程式を導いている。空欄(1)から(3)に適切な式を入れよ。 原点 O より平面 S に垂直におろした点を G (以下, \overrightarrow{OG} を法線ベクトル g と呼ぶ)、平面 S 上の任意の点 R の位置ベクトルを r とする。法線ベクトル g と,ベクトル \overrightarrow{GR} は垂直であることから、両ベクトル間には(1)の関係がある。ここで,r=(x,y,z), $g=(g_1,g_2,g_3)$ とすると、平面 S の方程式は x,y,z,g_1,g_2,g_3 を用いて,(2)で表される。また,平面 S の単位法線ベクトル $n=(n_1,n_2,n_3)$ と,原点 O から平面 S までの距離 p を用いると前式は,(3)で表される。
 - (2) 単位法線ベクトルが $(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})$ で (1,1,1) を通る平面を求めよ.
 - (3) 同一平面上に異なる 3 点 A,B,C が与えられたとき、外積を用いてこの 3 点より平面の方程式を 求める方法を述べよ。
 - (4) 3点 (1,2,3), (1,1,1), (0,3,1) によって与えられる平面の方程式を求めよ.

(北海道大 2004) (m20040102)

- **0.2** i, j, k をそれぞれ x, y, z 方面の単位ベクトルとして、以下の設問に答えよ.途中の計算手順を詳しく記述すること.
 - (1) 積分経路 $C: \mathbf{r}(t) = \cos t \ \mathbf{i} + \sin t \ \mathbf{j} + 2t \ \mathbf{k} \ (t = 0 \text{ から } t = 2\pi)$ に沿った、ベクトル関数 $\mathbf{F} = x\mathbf{i} + 2y\mathbf{j} + z\mathbf{k}$ の線積分 $\int_C \mathbf{F} \cdot d\mathbf{r}$ を求めよ.
 - (2) $f(r) = \frac{1}{\sqrt{r^2+1}}$ (r = xi + yj + zk, $r = ||r|| = \sqrt{x^2 + y^2 + z^2}$) とし、原点を中心とする半径が2の球の表面をSと表す.このとき、S上の点 $p = x_pi + y_pj + z_pk$ における $\nabla f \cdot n$ を求めよ.ただし、n はp におけるS の外向き単位法線ベクトルであり、 $\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k$ とする.

(北海道大 2012) (m20120102)

0.3 3次元空間にある次の2つの平面について、以下の設問に答えなさい.

平面 1 : $x + y + \sqrt{2}z = 0$

平面 2 : x+y=0

- (1) 平面1の法線ベクトルと平面2の法線ベクトルをひとつずつ求めなさい.
- (2) (1) で求めた 2 つの法線ベクトルのなす角を求めなさい. ただし、答えは 0 以上 π 以下とすること.
- (3) (1) で求めた 2 つの法線ベクトルの両方と直交するベクトルのうち、大きさが 1 であるものをひとつ求めなさい。

(北海道大 2021) (m20210101)

0.4 *xyz* 空間に 2 つの平面

 $\alpha : x + 3y - 2z + 1 = 0$

 $\beta : 2x - y + 3z - 2 = 0$

があるとき、次の問いに答えなさい.

(1) 2つの平面の単位法線ベクトルを求めなさい.

- (2) (1) で求めた2つの平面の単位法線ベクトルの外積を求めなさい.
- (3) 点(1,2,-1) を通り、平面 α および β に垂直な平面の方程式を求めなさい.

(岩手大 2008) (m20080301)

- **0.5** xyz 空間内に 3 点 A(1,0,0), B(0,2,1), C(1,2,2) があるとき、次の問いに答えなさい.
 - (1) ベクトル \overrightarrow{AB} とベクトル \overrightarrow{AC} の外積 \overrightarrow{AB} × \overrightarrow{AC} を求めなさい. その結果を用いて,3 点 A,B,C を含む平面 α の単位法線ベクトル \overrightarrow{n} を求めなさい.
 - (2) 平面 α の方程式を求めなさい.
 - (3) 原点 O を中心として平面 α に接する球 S の半径とその接点 P の座標を求めなさい.
 - (4) 接点 P が三角形 ABC 内にあるか否かを答えなさい。また、その理由を示しなさい。

(岩手大 2015) (m20150301)

- **0.6** 3次元空間上に存在する 3 点 A(0,1,-1), B(2,0,3), C(1,1,0) について、次の問いに答えなさい.
 - (1) 3 点 A, B, C を通る平面の方程式を求めなさい.
 - (2) (1) の平面の単位法線ベクトルを求めなさい.
 - (3) 原点を通り、(2)の単位法線ベクトルに平行な直線の方程式を求めなさい.
 - (4) (1) の平面と (3) の直線との交点の座標を求めなさい.

(岩手大 2017) (m20170301)

0.7 3次元空間 \mathbb{R}^3 のベクトル $\mathbf{a}=\left(\begin{array}{c} \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}}\\ -\frac{1}{\sqrt{3}} \end{array}\right)$ に対し、 \mathbf{a} を法線ベクトルに持つ原点を通る \mathbb{R}^3 内の平面

 ϵ_π とする. \mathbb{R}^3 のベクトルx に対し、平面 π に関して対称なベクトルを対応させる写像を f とすると、f は線形写像になっている. このとき、以下の問いに答えよ.

- (1) \mathbb{R}^3 のベクトル x に対し、f(x) を x と a を用いて表せ(内積を用いよ).
- (2) f(x) = Ax となる 3×3 行列を A とするとき、行列 A を求めよ.
- (3) Aの固有値と、それぞれの固有値に対応する固有空間を求めよ.

(秋田大 2019) (m20190404)

- **0.8** なめらかな曲線 y = f(x) について、次の問いに答えよ.
 - (1) 曲線上の点 P(a,b) における法線と x 軸との交点の座標が $(\frac{1}{2}(a+b^2),0)$ であるとき,関数 y=f(x) の満たす微分方程式を導け.
 - (2) (1) の微分方程式を満たし、点 (0,2) を通る曲線の方程式を求めよ、また、 $-3 \le x \le 1$ において、この曲線の概形を描け、必要ならば、 $e=2.718\cdots$ 、 $e^{-1}=0.367\cdots$, $e^{-1.5}=0.223\cdots$ を使ってもよい。

(東北大 1993) (m19930503)

- **0.9** 滑らかな曲線 y=f(x) 上の第1象限にある1点 P における法線が x 軸と交わる点を N とし、次の問いに答えよ.
 - (1) 長さ PN を求めよ.

- (2) PN と点 P の y 座標の平方の比が一定値 k であるとき、点 (0,1/k) を通る曲線の方程式を求めよ。 (東北大 1995) (m19950502)
- **0.10** $x = (x_1, x_2, x_3) \in \mathbb{R}^3, x \neq 0$ において関数 f を

$$f(x) = \frac{1}{|x|}, \quad |x| = \sqrt{x_1^2 + x_2^2 + x_3^2}$$

で定義する.このとき、次の問に答えよ.

- (1) $\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right),$ および $\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^2}$ を求めよ.
- (2) $\varepsilon > 0$ に対して, $S_{\varepsilon} = \{x \in \mathbb{R}^3 ; |x| = \varepsilon\}$ とする. S_{ε} に沿う表面積分

$$\int_{S_{\varepsilon}} \frac{\partial f}{\partial \boldsymbol{n}} dS$$

の値を求めよ. ただし, n は S_{ε} 上の単位外向き法線ベクトルであり, $\frac{\partial f}{\partial n} = \nabla f \cdot n$ は f の n 方向への微分を表す.

(3) S を原点 O を内部に含む \mathbb{R}^3 内の滑らかな閉曲面とするとき, S に沿う表面積分

$$\int_{S} \frac{\partial f}{\partial \boldsymbol{n}} dS$$

の値を求めよ. ただし, n は S 上の単位外向き法線ベクトルである.

(東北大 2005) (m20050505)

- **0.11** xyz 空間の曲面 $f(x,y,z)=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}-1=0$ について、以下の間に答えよ. ただし、a,b,c は 正の実数とする.
 - (1) 曲面 f(x, y, z) = 0 が囲む体積 V を求めよ.
 - (2) 点 P(1,2,3) が曲面 f(x,y,z) = 0 上の点となるとき, a,b,c が満たす式を求めよ.
 - (3) 曲面 f(x,y,z) = 0 上の点 P(1,2,3) における接平面 π_P および法線 n_P の式を求めよ.
 - (4) (2) の条件下で、(1) の体積 V が最小となる a,b,c の値を求めよ.

(東北大 2015) (m20150504)

0.12 xyz 空間における点 P の座標が実数 t の関数として次の式で与えられる.

$$\begin{cases} x(t) = a \cos t \\ y(t) = \sin t \\ z(t) = -a \sin t \end{cases}$$

ここで、a は正の実数である. $0 \le t \le 2\pi$ の範囲で点 P の描く曲線を C とする. 以下の問に答えよ.

- (1) $t=\frac{\pi}{2}$ と $t=\pi$ のそれぞれに対し、点 P の座標とその点における曲線 C の接線方向を表すベクトルを求めよ.
- (2) 曲線 C上の任意の点 Pにおける接線の方程式を求めよ.
- (3) 曲線 C が平面上の曲線であることを示し、その平面の方程式と単位法線ベクトルを求めよ.
- (4) 曲線 C が xz 平面に投影した曲線で囲まれる領域 D の面積を求めよ.

(東北大 2018) (m20180503)

- **0.13** 点 O(0,0,0) を原点とする xyz 空間において、中心を点 C(0,0,1)、半径を 1/2 とする球面 S_1 がある. 点 A(0,0,2) を通る直線を z 軸まわりに回転して得られる円錐面 S_2 が、球面 S_1 に接している. ただし、 $z \le 2$ とする.
 - (1) 円錐面 S_2 と球面 S_1 の接点のひとつを B とするとき, $\cos \angle CAB$ を求めよ.
 - (2) 円錐面 S_2 上の任意の点を P(x,y,z) とするとき、円錐面 S_2 の方程式を求めよ.
 - (3) 円錐面 S_2 と xy 平面で囲まれた閉曲面を S とする. 以下のベクトル場 F の面積分 I を求めよ.

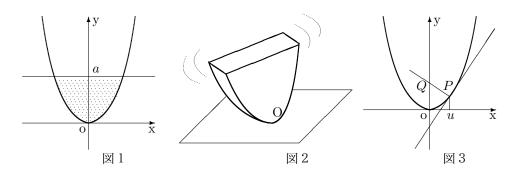
$$F = (x^3 z) \mathbf{i} + (x^2 y z) \mathbf{j} + \{(x^2 + y^2)z^2\} \mathbf{k}$$

$$I = \int_S \mathbf{F} \cdot \mathbf{n} \ dS$$

ただし、 \mathbf{i} , \mathbf{j} , \mathbf{k} は x,y,z 軸方向の基本ベクトルであり、単位法線ベクトル \mathbf{n} は S 内部から外向 きに取るものとする.

(東北大 2022) (m20220506)

- **0.14** 曲線 $y=x^2$ と 直線 $y=a\ (a>0)$ で囲まれた図形 (図 1 灰色部分)を考える.この図形に一定の厚みを持たせて平面上に立てた場合(図 2)に,点 O を接触点として安定に立っていられるかどうか調べたい.
 - (1) この図形の重心を求めよ.この場合厚みが一定であるので,重心は図形に属する各点の x,y 座標の平均となる.
 - (2) 図形がわずかに傾き、平面との接触点が点 O から微小量 u だけずれた時 (図3)、その新しい接触点 P における法線と y 軸との交点 Q を求めよ.
 - (3) 点 O で安定に立っているための、定数 a についての条件を求めよ.



(東京大 1999) (m19990701)

0.15 3つのベクトル場 \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} を考える. 各ベクトル場は次のように定義する.

$$\overrightarrow{A} = rf(r, z) \overrightarrow{e}_{\theta}$$

$$\overrightarrow{B} = \overrightarrow{\nabla} \times \overrightarrow{A}$$

$$\overrightarrow{C} = \overrightarrow{\nabla} \{ zf(r, z) \}$$

ただし、f(r,z) は

$$f(r,z) = (r^2 + z^2)^{-3/2}$$

とする. 円柱座標系 (r,θ,z) における基底ベクトルを $(\overrightarrow{e}_r,\overrightarrow{e}_\theta,\overrightarrow{e}_z)$ とし、以下の問いに答えよ.必要であればスカラー場 ϕ およびベクトル場 $\overrightarrow{V}=\overrightarrow{e}_rV_r+\overrightarrow{e}_\theta V_\theta+\overrightarrow{e}_zV_z$ に対する以下の勾配、発散、回転の式を用いてよい.

$$\overrightarrow{\nabla}\phi = \overrightarrow{e}_r \frac{\partial \phi}{\partial r} + \overrightarrow{e}_\theta \frac{1}{r} \frac{\partial \phi}{\partial \theta} + \overrightarrow{e}_z \frac{\partial \phi}{\partial z}$$

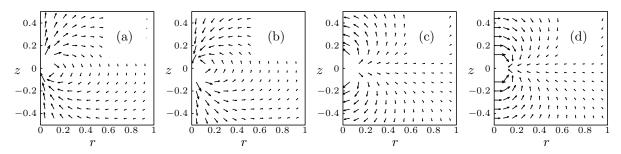
$$\overrightarrow{\nabla} \cdot \overrightarrow{V} = \frac{1}{r} \frac{\partial}{\partial r} (rV_r) + \frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta} + \frac{\partial V_z}{\partial z}$$

$$\overrightarrow{\nabla} \times \overrightarrow{V} = \overrightarrow{e}_r \left(\frac{1}{r} \frac{\partial V_z}{\partial \theta} - \frac{\partial V_{\theta}}{\partial z} \right) + \overrightarrow{e}_{\theta} \left(\frac{\partial V_r}{\partial z} - \frac{\partial V_z}{\partial r} \right) + \overrightarrow{e}_z \left(\frac{1}{r} \frac{\partial}{\partial r} (rV_{\theta}) - \frac{1}{r} \frac{\partial V_r}{\partial \theta} \right)$$

- (1) $\overrightarrow{\nabla} \cdot \overrightarrow{B}$ を求めよ.
- (2) $r \le r_0$ および $z = z_0$ により定義される円板面 S_0 を考える $(z_0 > 0)$. 面の法線方向を \overrightarrow{e}_z とするとき、この円板面における次の面積分 Φ を、必要があれば r_0 、 z_0 用いて、表わせ.

$$\Phi = \int_{S_0} \overrightarrow{B} \cdot d\overrightarrow{S}$$

- (3) \overrightarrow{B} および \overrightarrow{C} を求めよ.
- (4) ベクトル場 \overrightarrow{B} および \overrightarrow{C} の分布の概略として正しい図を下の(a)-(d) からそれぞれ選べ.



(5) $r \le r_0$ および $z_1 \le z \le z_2$ により定義される円柱 $(z_1 > 0)$ に対し、側面と両底面からなる閉曲面 S_1 を考える。面の法線方向を円柱外向きとする。この閉曲面における次の面積分 Q を、必要であれば r_0 、 z_1 、 z_2 を用いて、表わせ.

$$Q = \int_{S_1} \overrightarrow{C} \cdot d\overrightarrow{S}$$

(東京大 2018) (m20180703)

0.16 定義域を $0 \le u \le 2\pi$, $0 \le v \le 1$ とするベクトル関数

$$\overrightarrow{r}(u,v) = \left(\sqrt{1+v^2}\cos u, \sqrt{1+v^2}\sin u, v\right)$$

が表す曲面を S とする。曲面 S 上の (u,v) に対応する点における法線単位ベクトルを求めよ。また,曲面 S の面積を求めよ。

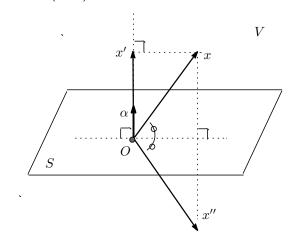
- **0.17** $f: \mathbb{R}^3 \to \mathbb{R}^3$ を平面 x+z=0 に関する対称移動とし、 $g: \mathbb{R}^3 \to \mathbb{R}^3$ を平面 y-z=0 に関する対称移動とするとき、以下の問いに答えよ.
 - (1) 平面 x+z=0 の原点を通る法線に点 (x,y,z) からおろした垂線の足を P とするとき,点 P の座標を求めよ.
 - $(2) \quad \pmb{x} = \left[\begin{array}{c} x \\ y \\ z \end{array} \right] \in \mathbb{R}^3 \ \texttt{に対し}, \ f(\pmb{x}) = A\pmb{x} \ \texttt{となる} \ 3 \ \text{次正方行列} \ A \ \texttt{を求めよ}.$
 - (3) 連立 1 次方程式 $\left\{ \begin{array}{ll} x+z=0 \\ y-z=0 \end{array} \right.$ を解け.
 - (4) 平面 x+z=0 と平面 y-z=0 のなす角 θ を求めよ,ただし, $0\leq\theta\leq\frac{\pi}{2}$ とする.

(5) $g \circ f: \mathbb{R}^3 \to \mathbb{R}^3$ は原点を通る直線を軸とする回転移動となる. 軸となる直線の方向ベクトルと回転する角度を答えよ.

- **0.18** 楕円面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ について以下の問いに答えよ.
 - (1) 楕円面上の点 (x_0, y_0, z_0) における外向き単位法線ベクトルを求めよ.
 - (2) 楕円面上の点 (x_0, y_0, z_0) における接平面の方程式を求めよ.
 - (3) 楕円面を平面 $z=z_0$ で切断した時にできる図形が囲む部分の面積を求めよ.ただし, $-c < z_0 < c$ である.
 - (4) 問い(3)で得られた面積を z_0 で積分することによって楕円面で囲まれた部分の体積を計算せよ.

- **0.19** 3次元空間において、下図に示す平面 S とベクトル x を考える。平面 S は原点 O を通り、その法線 ベクトルは $a(\neq 0)$ である。 また x は原点 O を始点とする任意のベクトルである。以下の問いに答えよ、ベクトル x, y の内積を $x \cdot y$ と表すこと。
 - (1) x の a への正射影を x' とする, x' を a, x を用いて表せ.
 - (2) x の平面 S に関する折り返しを表すベクトルを x'' とする. x'' を a, x を用いて表せ.
 - (3) (2) において、 \boldsymbol{x} に \boldsymbol{x}'' を対応させる写像は線形写像である.いま、 $\boldsymbol{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 、 $\boldsymbol{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ 、

$$m{x}'' = \left(egin{array}{c} x'' \\ y'' \\ z'' \end{array}
ight)$$
 とおいた場合に、この線形写像を表す行列を求めよ.



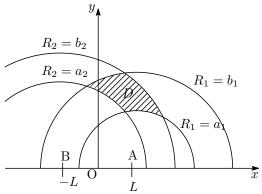
- **0.20** 2 変数関数 f(x,y) を $f(x,y) = \log \sqrt{x^2 + y^2}$ (ただし, $(x,y) \neq (0,0)$) と定義する. ここで、 \log は自然対数である. 以下の問いに答えよ.
 - (1) f(x,y) の全微分を求めよ.
 - (2) 曲面 z = f(x,y) について、点 (a,b,f(a,b)) における法線および接平面の方程式を求めよ.
 - (3) $\iint_D f(x,y) dx dy \ \& D = \left\{ (x,y) \,\middle|\, 0 < x^2 + y^2 \le 1 \right\} \ \& \ \cup \ \mathsf{T求めたい}. \quad f(x,y) \ \& \ (x,y) = (0,0)$ において定義されていないので、

$$D_{\varepsilon} = \{(x,y) \mid \varepsilon^2 < x^2 + y^2 \le 1, \ \varepsilon \in \mathbf{R} \} \$$
として、 $\lim_{\varepsilon \to +0} \iint_{D_{\varepsilon}} f(x,y) dx dy$ を計算せよ.

0.21 xy 平面の y>0 なる領域(上半面)の点 P(x,y) に対して、点 A(L,0) および点 B(-L,0) からの距離の二乗

$$R_1 = (x - L)^2 + y^2$$
, $R_2 = (x + L)^2 + y^2$

を考える.ここで L>0 とする.また, $f(x,y)=\frac{1}{2}\log\left(\frac{R_1}{R_2}\right)$ とする.



- (1) 偏導関数 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ を求めよ.
- c をゼロでない定数とし、xy 平面の上半面において f(x,y)=c で表される曲線を考える.この曲線上の任意の点 (x_0,y_0) における法線の方程式を求めよ.そして,その法線と x 軸との交点がc と L だけで決まることを示せ.
- (3) a_1,a_2,b_1,b_2 を正の定数とし, $R_1=a_1$ と $R_1=b_1$ で指定される円がそれぞれ $R_2=a_2$ と $R_2=b_2$ で指定される円と交わる場合を考える(図を参照).ここで $a_1 < b_1$, $a_2 < b_2$ とし,xy 平面の上半面において $a_1 \le R_1 \le b_1$, $a_2 \le R_2 \le b_2$ で指定される領域を D とするとき,D を x 軸の周りに回転して出来る回転体の体積は

$$V = 2\pi \int_{D} y dx dy$$

で与えられる. x,y に関する積分を R_1 , R_2 に関する積分に変換することにより V を求めよ.

(4) xy 平面を複素平面と考え、点 P(x,y) を複素数 z=x+iy に対応させ、

複素関数 $g(z) = \log\left(\frac{z-L}{z+L}\right)$ を考える。 $z-L = r_1e^{i\theta_1},\ z+L = r_2e^{i\theta_2}$ とおくことにより, g(z) の実部は f(x,y) に一致することを示せ。 ただし, $0 < r_1,\ 0 < r_2,\ 0 < \theta_1 < \pi$,および $0 < \theta_2 < \pi$ とする。 さらに g(z) の虚部は三角形 PAB のどの内角に対応するか答えよ.

(筑波大 2016) (m20161315)

- **0.22** $z = \frac{1}{xy}, x > 0, y > 0$ を満たす 3 次元空間内の曲面 S について以下の問いに答えよ.
 - (1) (x,y) = (1,2) における曲面 S の接平面の方程式と法線の方程式を求めよ.
 - (2) 曲面 S 上で、平面 x + 3y + 9z + 18 = 0 との距離が最も近い点の座標を求めよ.
 - (3) 6 つの平面 x=0, x=2, y=0, y=2, z=0, z=2 で囲まれる立方体を曲面 S で分割して得られる 2 つの領域のうち,原点を含まない方の領域の体積を求めよ.

(筑波大 2020) (m20201301)

- **0.23** 二次曲線 $y = 2x^2 + 5x + 3$ を考える.
 - (1) 二次曲線上の点 P(-2,1) における法線(点 P を通り、点 P における接線と垂直に交わる直線)の方程式を求めよ.

- (2) (1) の法線と二次曲線の交点の座標を求めよ.
- (3) (1) の法線と二次曲線により囲まれる面積を求めよ.

(群馬大 2009) (m20091504)

- 平面 π : 2x + 3y + 4z 12 = 0 と点 A:(1,2,3) について、以下の $\boxed{\ref{T}}$ を求めよ. 0.24
 - (1) π は x 軸と点 \boxed{r} , y 軸と点 \boxed{d} , z 軸と点 \boxed{d} でそれぞれ交わる.
 - (2) π に垂直で長さが 1 の法線ベクトルは |x| である.
 - (3) A と π との距離は | オ| である.

(図書館情報大 2002) (m20021608)

a,b,c を定数として、3次関数 0.25

$$f(x) = x^3 + ax^2 + bx + c$$

を考える. このとき以下の問に答えよ.

- (1) 関数 y=f(x) のグラフにおいて、点 $(\alpha,f(\alpha))$ における接線と法線の方程式を求めよ.
- (2) どのような場合に、関数 y = f(x) が $x = \alpha$ で極値をとるといわれるのかを説明せよ.
- (3) 関数 y = f(x) が x のいかなる値でも極値をとらない条件を a,b,c を用いて示せ.

(茨城大 2002) (m20021701)

- 3 次元ユークリット空間 ℝ³ において ax + by + cz + d = 0 で与えられる平面 H を考える. 平 0.26面 H 上にない点 P_0 の座標を (x_0, y_0, z_0) とし、H 上の点 P_1 の座標を (x_1, y_1, z_1) とする. また、 $\mathbf{v} = (x_0 - x_1, y_0 - y_1, z_0 - z_1)$ とする. このとき, 次の各問いに答えよ.
 - (1) H の単位法線ベクトル u (H と直交する長さ 1 のベクトル) を求めよ.
 - (2) $v-\langle u,v\rangle u$ と u は直交することを示せ. また $v-\langle u,v\rangle u$ の幾何学的な意味を説明せよ. ただし、 $\langle u, v \rangle$ は u と v の内積を表す.
 - (3) 点 P_0 と平面 H との距離は $|\langle u, v \rangle|$ で与えられることを説明せよ.
 - (4) (3) を用いて点 Po と平面 H との距離の公式

$$\frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

を証明せよ.

(新潟大 2012)

0.27 曲線 $F(x,y,z) = \frac{x^2}{4} + y^2 + z^2 - 1 = 0$ 上の点 $\left(-1, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$ における法線の方程式を求めよ. (新潟大 2017)

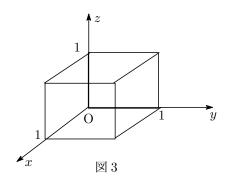
(m20172008)

平面 x+y+z=1 が座標軸と交わる点を A,B,C,3 点 A,B,C を結ぶ線分で囲まれた三角形を S と 0.28する. ベクトル関数 $\mathbf{A} = 2x\mathbf{i} + y\mathbf{j} + 2z\mathbf{k}$ の S 上での面積分 $\iint_{S} \mathbf{A} \cdot \mathbf{n} dS$ を計算しなさい. ただし, n は S の単位法線ベクトルで、原点から S へ引いた垂線の向かう向きとする.

> (金沢大 2016) (m20162211)

- ベクトル関数 $\mathbf{A}(x,y,z) = (x^2,y^2,1)$ について、以下の各問いに答えなさい. 0.29
 - (1) \mathbf{A} の発散 $\nabla \cdot \mathbf{A}$ を求めなさい.

(2) 図 3 に示した一辺の長さが 1 の立方体の表面を S とする.閉曲面 S における面積分 $\iint_S \mathbf{A} \cdot \mathbf{n} \ dS$ を求めなさい.ただし, \mathbf{n} は S 上の単位法線ベクトルである.



(金沢大 2022) (m20222213)

- **0.30** 関数 $f(x, y, z) = \exp\{-(x^2 + 2y^2 + z^2)\}$ について、以下の問いに答えよ.
 - (1) f=c (c は定数) よって与えられる曲面を等位面という. $f=\frac{1}{e}$ (e は自然対数の底) となる等位面を S とし、等位面 S が xy 平面と交わる曲線を xy 平面上に図示せよ.
 - (2) f=c の等位面上の点における法線ベクトルは grad $f(=\nabla f)$ で与えられる。 等位面 S 上の点 $P\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ における単位法線ベクトルを求めよ。
 - (3) 等位面 S 上の点 $P\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ における接平面の方程式を求めよ.

(富山大 2008) (m20082302)

- **0.31** (1) 放物線 $y = \frac{1}{2}x^2$ の接線の集合が表す微分方程式を求めよ.
 - (2) 線形微分方程式 y' + y = 2 + 2x の一般解を求めよ.
 - (3) 法線影の長さが一定の長さ a(>0) に等しい曲線群のうち, 原点 O(0,0) を通る第一象限の曲線を求めよ.ここで法線影とは,曲線上の一点 P から x 軸に引いた垂線と x 軸の交点を H, P における法線が x 軸と交わる点を N としたときの有向線分 HN の長さをいう.

(富山大 2012) (m20122306)

- **0.32** 空間に位置ベクトル \overrightarrow{a} が示す点 A と位置ベクトル \overrightarrow{b} が示す点 B がある.
 - (1) 点 A を通る直線 ℓ のベクトル方程式を媒介変数 t を用いて表せ、 ただし、 直線 ℓ の単位ベクトルを \overrightarrow{e} とする.
 - (2) 直線 ℓ のうち、 \overrightarrow{b} に平行な直線のベクトル方程式を媒介変数を用いずに表せ、
 - (3) 点 B を通る平面 S のベクトル方程式を求めよ. ただし、平面 S の単位法線ベクトルを \overrightarrow{n} とする.
 - (4) 点 A から平面 S までの最短距離を媒介変数を用いずに表せ.

(富山大 2013) (m20132303)

- **0.33** $\phi(x,y,z) = e^{2x^2-4y^3+z^2}$, $\overrightarrow{A}(x,y,z) = 2xyz^3\overrightarrow{i} + x^2z^3\overrightarrow{j} + 3x^2yz^2\overrightarrow{k}$ について、次の問いに答えよ、ただし、 \overrightarrow{i} 、 \overrightarrow{j} 、 \overrightarrow{k} は直交座標の単位ベクトルである.
 - (1) $\operatorname{rot} \overrightarrow{A} = \overrightarrow{0}$ を示せ.
 - (2) 点 (1,1,-1) において、 $\phi \overrightarrow{A}$ の発散の値を求めよ.
 - (3) 点 (1,1,-1) における ϕ の点 (-3,5,6) に向かう方向の方向微分係数を求めよ.

(4) $\int_S \overrightarrow{A} \cdot \overrightarrow{n} dS$ の値を求めよ. ただし, S は円柱面 : $x^2+y^2=1$ の $x \ge 0$, $y \ge 0$, $0 \le z \le 1$ を満たす部分とし, \overrightarrow{n} は S の単位法線ベクトルとする.

(富山大 2014) (m20142303)

- **0.34** 空間座標の原点 O からの距離 r で定義される関数 $\varphi(r) = \log_e r \ (r>0)$ について次の各問いに答え よ. ただし, \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} を直交座標系 O-xyz の単位ベクトルとし, $\overrightarrow{r}=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}$, $r=|\overrightarrow{r}|$ であるとする.
 - (1) 点 P(1,1,0) を含む等位面(関数の値が等しい点の集合)の点 P における単位法線ベクトル \overrightarrow{n} の x,y,z 成分を求めよ.
 - (2) 点 Q(0,0,1) における、ベクトル $\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k}$ の方向への $\varphi(r)$ の方向微分係数を求めよ.
 - (3) 勾配の発散 $\nabla^2 \varphi(r)$ を r の関数として求めよ.
 - (4) 勾配の回転 $\nabla \times \nabla \varphi(r)$ が $\overrightarrow{0}$ であることを示せ.

(富山大 2015) (m20152307)

- **0.35** スカラー関数 $f(x,y,z)=e^{-\frac{1}{2}(x^2+y^2+z^2)}$ について、次の各問いに答えよ. ただし、 \overrightarrow{i} 、 \overrightarrow{j} 、 \overrightarrow{k} は、それぞれ直角座標系の x,y,z 方向の単位ベクトルとする.
 - (1) 点 $P(\sqrt{2}, \sqrt{2}, 0)$ を含む等位面(関数 f の値が等しい点の集合)の点 P における単位法線ベクトル \overrightarrow{n} の x, y, z 成分を求めよ.
 - (2) 関数 f の勾配の発散 $\nabla \cdot \nabla f$ を求めよ.
 - (3) 関数 f の勾配の回転 $\nabla \times \nabla f$ を計算し、 $\overrightarrow{0}$ となることを示せ.
 - (4) 点 Q(1,0,1) における, ベクトル $\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+\sqrt{2}\overrightarrow{k}$ の方向への f の方向微分係数を求めよ.

(富山大 2017) (m20172303)

- **0.36** スカラー場 $\phi(x,y,z)=x^2y+y^2z-xy\,e^{(z^2)}$ 、ベクトル場 $\overrightarrow{F}(x,y,z)=-y\,\overrightarrow{i}+x\,\overrightarrow{j}+xyz\,\overrightarrow{k}$ について、次の各問いに答えよ. ただし、 \overrightarrow{i} 、 \overrightarrow{j} 、 \overrightarrow{k} は直交座標系 x、y、z の各軸方向の単位ベクトルとする. また、点 P の座標を(2、1、0)とする.
 - (1) 点Pにおける、 ϕ の等位面の単位法線ベクトルを求めよ.
 - (2) 点 P における、 \overrightarrow{F} 方向に対する ϕ の方向微分係数を求めよ.
 - (3) $\operatorname{rot} \overrightarrow{F}$ を求めよ.
 - (4) 原点 O から点 P に至る線分 OP における, \overrightarrow{F} の線積分 $\int_{OP} \overrightarrow{F} \cdot d\overrightarrow{r}$ を求めよ.ここで, \overrightarrow{r} は位置ベクトルである.

(富山大 2022) (m20222304)

0.37 曲面 $z = x^2 + y^2$ 上の点 (1,2,5) における単位法線ベクトルを求めよ.

(福井大 2001) (m20012408)

0.38 $x = a(t - \sin t), \ y = a(1 - \cos t)$ のとき、 $t = t_0$ に対応する点 (x_0, y_0) における接線と法線の方程式を求めよ.

(福井大 2006) (m20062402)

0.39 (x,y) 平面上の任意の点 A における法線へ原点から下ろした垂線の長さが、点 A の y 座標に等しい曲線は $x^2 + y^2 = cx$ (c は定数) となることを示せ.

(静岡大 2006) (m20062509)

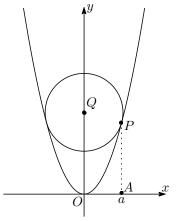
- **0.40** xyz 空間における平面 $\pi: x+2y+3z-5=0$ および直線 $g: \frac{x-1}{3}=\frac{y-2}{-5}=\frac{z+3}{2}$ について、次の間に答えよ.
 - (1) 平面 π の単位法線ベクトルを求めよ.
 - (2) 直線gの単位方向ベクトルを求めよ.
 - (3) 平面 π と直線 q の交点の座標を求めよ.

(岐阜大 2004) (m20042605)

次式で表される放物線がある.

$$y = x^2$$

図に示すように, y 軸上にある点 Q を中心とする円がこの放物線に接している. x>0 の領域における接点を P とし, 点 P から x 軸に下ろした垂線の x 軸との交点を A とし, その x 座標を a とする. 以下の問いに答えよ.



- **0.41** (1) 点 P を通り、放物線に接する直線の方程式を a を用いて表せ.
 - (2) 点 P を通り放物線の法線となる直線の方程式を a を用いて表せ.
 - (3) 点Qのy座標をaを用いて表せ.
 - (4) 原点 O から点 Q までの距離 \overline{OQ} と点 A までの距離 \overline{OA} の比 $r = \frac{\overline{OQ}}{\overline{OA}}$ が最小となる a の値を求めよ. また、そのときの r の値を求めよ.

(豊橋技科大 2005) (m20052705)

- **0.42** 放物線 $y = x^2$ から点 A(10,2) までの最短距離を次の方法に従って求めよ.
 - (1) この放物線上の点 $P(x_p, x_p^2)$ における法線の方程式を求めよ.
 - (2) 上で求めた法線が点 A を通ることから x_p を求め、点 P と点 A の距離を計算せよ.

(豊橋技科大 2006) (m20062702)

0.43 (1) 次の行列の行列式を $\det A$ とする.

$$A = \left(\begin{array}{ccc} x - a & y - b & z - c \\ d - a & e - b & f - c \\ l & m & n \end{array}\right)$$

ここで、a,b,c,d,e,f,l,m,n は定数として、方程式 $\det A=0$ が 3 次元空間(xyz 空間)上の平面の式を与えることを示せ、また、この平面の法線ベクトルを求めよ、

(2) この平面に直線 $\frac{x-d}{l} = \frac{y-e}{m} = \frac{z-f}{n}$ が含まれることを示せ.

(三重大 2003) (m20033112)

- **0.44** 原点を O とする 3 次元直交座標系上に、点 A(0,1,2) と点 B(3,3,0) がある. このとき、以下の問い に答えよ.
 - (1) $\angle AOB = \theta$ として, $\cos \theta$ を求めよ.
 - (2) 線分 \overline{AB} の長さを求めよ.
 - (3) 3 点 O, A, B を通る平面の法線ベクトルを求めよ. ただし、正規化しなくて良い.
 - (4) △AOB の面積を求めよ.

0.45 xyz 直交座標系であらわされる空間の xy 平面上に楕円 E,

$$\frac{x^2}{5} + \frac{y^2}{4} = 1$$

がある. 楕円 E を底面とし、z 軸上の点 (0,0,2) を頂点とする錐体(楕円錐)P について以下の問い に答えなさい. ただし、 $0 \le z \le 2$ とする.

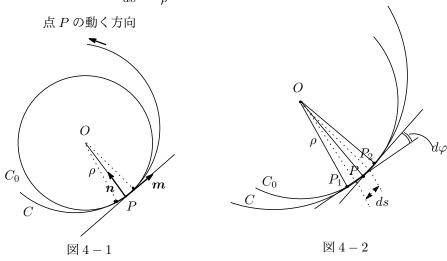
- (1) 錐体 P の方程式を x, y, z を用いてあらわしなさい.
- (2) 楕円 E 上の点 (0,2,0) をとおり、 $\overrightarrow{n}=(0,1,3)$ を法線とする平面 α の方程式を示しなさい.
- (3) 平面 α による錐体 P の切断面の外周上の任意の点を X とする。 平面 α 上の点 $A\left(0,\frac{1}{2},\frac{1}{2}\right)$ と X との距離 R (\overrightarrow{XA} の大きさ) は定数になる。 R を求めなさい。
- (4) 平面 α による錐体 P の切断面の面積 S を求めなさい.

(三重大 2020) (m20203108)

- **0.46** xy 平面上の曲線 C が媒介変数 t を用いて $x = r(t \sin t), \ y = r(1 \cos t) \ (0 \le t \le 2\pi)$ で与えられている.ここで,r は正の定数とする.このとき,次の (1) ~(3) に答えよ.
 - (1) 曲線 C の長さ l を求めよ.
 - (2) 曲線 C と x 軸とで囲まれる図形の面積 S を求めよ.
 - (3) 曲線 C 上の両端以外の点 P に対して,P における C の法線と x 軸との交点を考え,その座標を (a,0) とする.P を動かすとき,P における C の接線と直線 x=a との交点は,どのような 図形を描くか.

(京都大 2012) (m20123303)

- **0.47** 滑らかな曲線 C 上を動く点 P について、次の間 (1) ~(2) に答えよ. なお、図 4-1 に示すように、P における曲線の単位接線ベクトルを m、単位主法線ベクトルを n と表すものとする.
 - (1) C 上の点 P とそれに非常に近い点 P_1 , P_2 の 3 点を通る円を C_0 とし, C_0 の中心を点 O,半径を ρ ,線分 P_1P の中点と線分 PP_2 の中点の間の距離を ds,直線 P_1P と直線 PP_2 のなす角を $d\varphi$,とする(図 4-1, 4-2).点 P_1 , P_2 間の C に変曲点はないものとする.
 - (a) 直線 P_1P ,直線 PP_2 上の単位ベクトル m_1 , m_2 は近接する 2 つの単位接線ベクトルとみることができ $m_2-m_1=dm$ である.このとき $\left|\frac{dm}{ds}\right|=\frac{1}{\rho}$ となることを示せ.
 - (b) $\frac{d\mathbf{m}}{ds}$ は \mathbf{m} と垂直であり、 $\frac{d\mathbf{m}}{ds} = \frac{1}{\rho}\mathbf{n}$ となることを示せ.



(2) 点 P の時刻 t における位置ベクトル $\mathbf{r}(t)$ が、

 $r(t) = [b\cos t \quad b\sin t \quad ct]$ (b, c は正の定数)

で表されるとき、Pの速度 v(t)、および、加速度 a(t) を、Pの軌跡における、単位接線ベクトル m と単位主法線ベクトル n で表せ、

(京都大 2013) (m20133304)

- **0.48** 関数 $f(x,y) = x^y$ (x > 0, y > 0) について次の問いに答えよ.
 - (1) f(x,y) の 1 階および 2 階の偏導関数をすべて求めよ.
 - (2) 曲面 z = f(x,y) の点 (e,1,f(e,1)) における接平面の方程式と法線の方程式を求めよ.

(京都工芸繊維大 2008) (m20083403)

0.49 曲線 C 上の点を P(x,y) で表す.また,P での曲線 C の接線の傾きを y' で表す.P での曲線 C の法線が x 軸と交わる点を Q とする.曲線 C 上のすべての点で,線分 PQ の長さが点 Q の x 座標に等しいとき,この曲線がみたす微分方程式を求めよ.この微分方程式を解いて曲線 C の方程式を求めよ.

(大阪大 2009) (m20093503)

- **0.50** ベクトル $\mathbf{p} = (p_x, p_y, p_z), \mathbf{q} = (q_x, q_y, q_z)$ に対して、 \mathbf{p} , \mathbf{q} の内積、外積をそれぞれ $\mathbf{p} \cdot \mathbf{q}$ 、 $\mathbf{p} \times \mathbf{q}$ と表す、以下の問いに答えよ、
 - (1) ベクトル $\mathbf{A} = (A_x, A_y, A_z), \mathbf{B} = (B_x, B_y, B_z), \mathbf{C} = (C_x, C_y, C_z)$ に対して、次の等式が成り立つことを示せ、

$$A \cdot (B \times C) = B \cdot (C \times A) = C \cdot (A \times B)$$

- (2) 3 つのベクトル $\mathbf{a} = (4,3,5), \mathbf{b} = (3,1,4), \mathbf{c} = (8,3,2)$ が作る平行六面体の体積を求めよ.
- (3) 空間内に直交座標系をとる. i, j, k をそれぞれ x 軸, y 軸, z 軸の正の向きと同じ向きの単位 ベクトルとする.

 $e_r = \cos u \cos v \, i + \sin u \cos v \, j + \sin v \, k$

とおく. 正の定数 R に対して,原点を中心とした半径 R の球面 S は,次の位置ベクトル r で表せる.

$$r = Re_r, \ 0 \le u \le 2\pi, \ -\frac{\pi}{2} \le v \le \frac{\pi}{2}$$

球面 S 上の各点 P における外向き法線ベクトルが,点 P の位置ベクトルと同じ向きをもつように S の向きを定める. このとき,ベクトル $\mathbf{F}=\frac{u}{R}\mathbf{e}_r$ に対して,S における次の面積分を求めよ.

$$\int_{S} \mathbf{F} \cdot dS$$

(大阪大 2015) (m20153503)

0.51 原点を中心とした半径 $r(r \neq 0)$ の球面 S は媒介変数 u, v (ラジアン単位) を用いて、

 $\boldsymbol{r} \big(=\boldsymbol{r}(u,\ v)\big) = r\ \boldsymbol{i}_r = r\cos u\cos v\ \boldsymbol{i}_x + r\sin u\cos v\ \boldsymbol{i}_y + r\sin v\ \boldsymbol{i}_z$

$$(0 \le u \le 2\pi, -\pi/2 \le v \le \pi/2)$$

と表すことができる. ここで, i_x , i_y , i_z は x, y, z 座標のそれぞれの基本ベクトルであり, i_r は r 方向の単位ベクトルである.

(1) $\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}$ を r, i_r , v で表せ.

(2) ベクトル場 $\mathbf{R} = \frac{u^2}{r} \mathbf{i}_r$ とするとき, \mathbf{R} の球面 S に沿う面積分,

$$\iint_{S} \mathbf{R} \cdot \mathbf{n} \ dS$$

を求めよ. ただし、n は S の外向きの単位法線ベクトルとする.

(大阪大 2021) (m20213502)

0.52 x, y 実数とし,

$$f(x,y) = \operatorname{Tan}^{-1} \frac{y}{x} \quad (x \neq 0)$$

とおく. 以下の問いに答えよ.

- (1) $f_x(x,y)$, $f_y(x,y)$ を求めよ.
- (2) 曲線 z = f(x, y) の, 点 $(1, 1, \pi/4)$ における接平面と法線の方程式を求めよ.
- (3) $f_{xx}(x,y) + f_{yy}(x,y)$ を求めよ.

(神戸大 2010) (m20103804)

0.53 $z=\frac{x^2}{a^2}+\frac{y^2}{b^2}$ (a,b>0) で表される曲面の曲面上の点 $(x_0,y_0,z_0),~(x_0\neq 0,~y_0\neq 0)$ における 接平面 と法線の方程式を求めよ.

(鳥取大 2007) (m20073905)

0.54 z = xy なる面上の点 P(2, -1, -2) において、この面の単位法線ベクトルを求めよ.

(広島大 2001) (m20014106)

- **0.55** $f=x^2+y^2+rac{1}{4}z^2-1$ とする. 座標系の原点を $O,\ x,y,z$ 軸上で正の向きをもつ単位ベクトルをそれ ぞれ i,j,k とし、以下の問に答えよ.
 - (1) スカラー場 f の勾配を計算せよ.
 - (2) 曲面 f=0 上の点 $P(x_0,y_0,z_0)$ における勾配ベクトル a とベクトル \overrightarrow{OP} とのなす角を、 z_0 を用いて表せ、
 - (3) $x=\sin\theta\cos\varphi$, $y=\sin\theta\sin\varphi$, $z=2\cos\theta$ とおく. ただし, $0\leq\theta\leq\pi$, $0\leq\varphi\leq2\pi$ である. 曲面 f=0 上の点 $Q(\sin\theta\cos\varphi,\sin\theta\sin\varphi,2\cos\theta)$ における接平面を張る二つのベクトルの組を示し、法線ベクトルを計算せよ.
 - (4) (3) と同じ表記の下で, $0 \le \theta \le \theta_0$, $0 \le \varphi \le 2\pi$ により囲まれる曲面の面積を $S(\theta_0)$ とする. $\frac{dS}{d\theta_0}$ を求めよ. ただし, $0 \le \theta_0 \le \pi$ である.

(九州大 2004) (m20044707)

0.56 次の線形変換を考える. 以下の問いに答えよ.

$$p' = Ap$$
, $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$, $p = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $p' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$

- (1) 線形変換の像p'はある平面上に限定される.この平面を表す式を求めよ.
- (2) (1) で求めた平面に対する零でない法線方向ベクトルuを示せ.

また、
$$u$$
 とベクトル $p_1'=\begin{pmatrix} 1\\0\\-1\end{pmatrix}$ に直交するベクトルを求めよ.

(3) $\mathbf{p} \neq 0$ のとき $\frac{|\mathbf{p}'|}{|\mathbf{p}|}$ の最大値を求めよ. $\frac{|\mathbf{p}'|}{|\mathbf{p}|}$ が最大値をとるときの x,y,z の条件を示せ.

(九州大 2020) (m20204706)

- **0.57** 互いに異なる正の定数 a, b, c を考える. 空間内の点 O(0,0,0), A(a,0,0), B(0,b,0) C(0,0,c) を頂点とする 4 面体を V とする. また V 内部にある点を P(x,y,z) とする. 以下の問いに答えよ.
 - (1) 点 A, B, C, P を頂点とする 4 面体を V_1 , 点 O, B, C, P を頂点とする 4 面体を V_2 , 点 O, C, A, P を頂点とする 4 面体を V_3 , 点 O, A, B, P を頂点とする 4 面体を V_4 とする. 4 面体 V_1 , V_2 , V_3 , V_4 の体積比 λ_1 : λ_2 : λ_3 : λ_4 を a, b, c, x, y, z を用いて表せ. ただし, λ_i (j=1,2,3,4) は $0 \le \lambda_i \le 1$ および $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1$ を満たす実数とする.
 - (2) 関数 $\phi = \phi(x, y, z), \psi = \psi(x, y, z)$ をそれぞれ

$$\phi = \lambda_1 \nabla \lambda_2 - \lambda_2 \nabla \lambda_1 \quad \psi = \lambda_2 \nabla \lambda_3 - \lambda_3 \nabla \lambda_2$$

で定める. 関数 $\phi = \phi(x, y, z), \psi = \psi(x, y, z)$ を, a, b, c, x, y, z を用いて表せ.

(3) 関数 f = f(x,y,z) を $f(x,y,z) = e^{x+y+z}\sin(x-z)\phi(x,y,z) + x^2\sin(-x+y)\psi(x,y,z)$ で定める. このとき、積分

$$\int_{\ell_{AB}} f \cdot d\boldsymbol{r}$$

を求めよ. ただし、 ℓ_{AB} は点 A から B に進む方向を正とする線分、r は線分 ℓ_{AB} 上にある点の位置ベクトルである.

(4) 関数 f を前問で定めた関数とする. このとき、積分

$$\int_{S} (\nabla \times f) \cdot \boldsymbol{n} \ dS$$

を求めよ. ただし、S は点 O,B,A を頂点とする 3 角形、n は z 成分が負となる S の単位法線 である.

(九州大 2022) (m20224702)

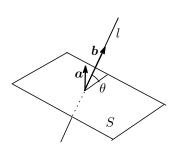
0.58 曲面 $z = x^2 + y^2$ の点 (3, 4, 25) における接平面と法線の式を求めよ.

(九州芸術工科大 2003) (m20034803)

0.59 頂点の座標が、A点 (1,0,1)、B点 (2,0,1)、C点 (3,3,5) で与えられる $\triangle ABC$ の面積と法線方向の単位ベクトルを求めなさい。

(鹿児島大 2005) (m20055414)

- 0.60 次のベクトルに関する問いに答えよ.
 - (1) 右図のように、a は平面 S と直交する法線ベクトルであり、b は平面 S と角 θ (\leq 90°) で交わる直線 l の上に存在するベクトルである。a、b を用いて $\sin \theta$ を表せ.
 - (2) 次の式で表される二つの平面 S_1 と S_2 の交角 α を求めよ. $S_1: x+2y+2z=3 \hspace{1cm} S_2: 3x+3y=1$



(鹿児島大 2008) (m20085403)

- **0.61** 空間に直交座標系 (x,y,z) をとる. 以下の設問に答えなさい.
 - (1) 点(1,0,0),(0,1,0) および(0,0,1) を含む平面の方程式を求めよ.

- (2) この平面の単位法線ベクトル $\mathbf{n} = (l, m, n)$ $(\sqrt{l^2 + m^2 + n^2} = 1)$ を求めよ.
- (3) 座標原点からこの平面までの距離 s を求めよ.

(鹿児島大 2009) (m20095415)

- **0.62** 直交座標系 O-XYZ において、点 A(1,-3,2) を含む平面 $C_A:-2x+y+3z-1=0$ 、点 B(1,-1,-2) を含む平面 $C_B:3x+2y+z+1=0$ がある.次の問いに答えよ.
 - (1) 両平面の法線ベクトルを求めよ. 平面 C_A の点 A を通る法線の方程式, 平面 C_B の点 B を通る 法線の方程式をそれぞれ求めよ.
 - (2) 両平面の交線の単位方向ベクトルを求めよ.

(鹿児島大 2011) (m20115404)

- **0.63** 直交座標系 O-XYZ において、平面 $C_A: x+y=0$ と平面 $C_B: 5y+z=0$ がある。次の問いに答えよ.
 - (1) 両平面の法線ベクトルを求めよ. さらに、両平面の交線にある交線ベクトルを求めよ.
 - (2) 上記の交線ベクトルを平面 C_P の法線ベクトルとして,点 P(1,2,1) を含んで平面 C_A と平面 C_B にそれぞれ直交する平面 C_P を求めよ.

(鹿児島大 2012) (m20125410)

0.64 O - xyz 座標系において、次の法線ベクトルをもつ二つの平面に関して以下の問いに答えよ.

$$n_1 = 2i - 2j + k$$
$$n_2 = 2i + 3j + 2k$$

ただし、i, j, k は、それぞれ x 軸方向、y 軸方向、z 軸方向の単位ベクトルを表す。

- (1) 二つの平面が直交することを示せ.
- (2) 二つの平面に平行な直線の単位方向ベクトルを求めよ.

(鹿児島大 2016) (m20165404)

- **0.65** 直交座標系 O-xyz において、点 A(1,0,1)、点 B(0,2,0) および点 C(-1,-2,3) がある. 以下の問いに答えよ.
 - (1) この3点を通る平面の方程式を求めよ.
 - (2) 求めた平面に直交な法線の単位方向ベクトルを求めよ.

(鹿児島大 2017) (m20175404)

0.66 直交座標系の任意の点 P(x,y,z) において、ベクトル場 A を考える.

 ${m A}$ を ${m A}=(A_x,\ A_y,\ A_z)=(x,y,z)$ とし、原点を中心として半径 a の球面を閉曲面 S とした時、以下の問いに答えよ.

- (1) 閉曲面 S 上の任意の点における法線ベクトル n (|n|=1) を求めよ.
- (2) 閉曲面 S 上全体にわたる面積分 $\iint_S \mathbf{A} \cdot \mathbf{n} \ dS$ を求めよ.
- (3) 閉曲面 S 内全体にわたる体積分 $\iiint \operatorname{div} \mathbf{A} \ dV = \iiint \nabla \cdot \mathbf{A} \ dV$ を求めよ.

(室蘭工業大 2016) (m20165508)

0.67 xy 座標平面において放物線を $y=\frac{1}{3}x^2$ とし、直線を y=x とする.以下の設問に答えよ.

- (1) 放物線と直線の二つの交点 $A(x_1, y_1)$ と $B(x_2, y_2)$ の座標を求めよ. ただし、 $x_2 > x_1$ とする.
- (2) 点 $A(x_1, y_1)$ から点 $B(x_2, y_2)$ までの放物線の長さ L を求める式を示せ. すなわち、式だけを示せばよく、値を求める必要はない.
- (3) 点 $B(x_2, y_2)$ における放物線の接線と法線の方程式を求めよ.
- (4) 放物線と直線で囲まれた部分の面積 S を求めよ.
- (5) 放物線と直線で囲まれた部分が、x軸の周りに1回転してできる回転体の体積Vを求めよ.

(島根大 2018) (m20185801)

- **0.68** (1) $\lim_{x\to\infty} x^3 e^{-x}$ を求めなさい.
 - (2) $\frac{x^2}{2^2} + \frac{y^2}{3^2} + \frac{z^2}{5^2} = 3$ で表される曲面の、点 (2,3,5) における法線の方程式を求めなさい.
 - (3) 次の2重積分を極座標変換を利用して求めなさい.

$$\iint_D e^{-(x^2+y^2)} dx dy , \quad D = \{(x,y) \mid x \ge 0, \ y \ge 0\}$$

(和歌山大 2008) (m20086502)